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Preface

This is Volume | of a two volume final report. The report title is “Probabilistic
Evaluation of Mobile Source Air Pollution.” Volume ! is titled “Probabilistic Modeling of
Exhaust Emissions from Light Duty Gasoline Vehicles.” Volume | deals with
quantification of variability and uncertainty in emission factors for light duty gasoline
vehicles.

Volume 2 of the report is titled “Probabilistic Emissions Inventories For Highway
Vehicles and Probabilistic Air Quality Modeling.” Volume 2 deals with the use of the
probabilistic emission factors described in Volume 1 in the preparation of emissions
inventories. Uncertainty in the emissions inventories are quantified for highway vehicles
and for seven road classifications. The quantification of uncertainty in the mobile source
emission inventory is based upon probabilistic emission factors and analysis of vehicle
activity data for selected road classifications. The probabilistic emission inventory is used
as an input to a trajectory-based air quality model, OZIPP, for the purpose of evaluating the
implications of uncertainty in highway vehicle emissions with respect to the development of

emissions control strategies.
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Abstract

Emission factors for light duty gasoline vehicles (LDGV) are typically developed
based upon laboratory testing of vehicles for prescribed driving cycles. The U.S.
Environmental Protection Agency has developed the Mobile series of emission factors
models, which enable users to obtain point estimates of emission factors. In this project,
we revisited some of the LDGV data sets and modeling assumptions used to develop
Mobile5a. The data were used to develop probabilistic estimates of the inter-vehicle
variability in emissions and the uncertainty in fleet average emissions for selected vehicle
types and driving cycles. Probabilistic model development and case studies focused upon
the base emission rate and speed correction estimates used within the MobileSa model for
throttle body and port fuel injected vehicles. Based upon inter-vehicle variability in the data
sets, and a probabilistic model in which the standard error terms of regression models
employed in Mobile5a are also considered, we estimated the uncertainty in the ability to
predict average emission factors for the selected fleets of light duty gasoline vehicles. The
90 percent confidence interval for the average emission factor varies in range with pollutant
and driving cycle. The 90 percent confidence interval for the mean emission factors are
plus or minus 20 to 40 percent for hydrocarbon emissions, 20 to 40 percent for carbon
monoxide (CO) emissions, and 25 to 55 percent for nitrogen oxides (NO, ) emissions.
Furthermore, the mean values of emission factors obtained from the probabilistic estimate
were typically larger than the corresponding point estimates that underlie the Mobile5a
models. These latter results suggest that failure to quantitatively consider variability and
uncertainty during model development can lead to potentially biased estimates of emission
factors. The estimates of random and systematic error in this study are useful for
quantifying uncertainty in emissions inventories. Additional work is needed to estimate
uncertainty for other LDGV technology groups, other vehicle classes, and other

components of the Mobile models, such as other correction factors.







Executive Summary

Estimates of emissions from highway mobile sources are typically developed using
a deterministic point-estimate approach. This approach involves the use of emission factor
models such as MobileSa, developed by the U.S. Environmental Protection Agency, to
make estimates of vehicle emission factors for hydrocarbons (HCs), carbon monoxide
(CO) and nitrogen oxides (NO,). The development of these estimates requires many
assumptions that are subject to considerable variability and uncertainty. For example, even
for a single vehicle category such as light duty gasoline vehicles (LDGVs), there is
substantial variability in the emissions under the standard Federal Test Procedure (FTP) test
conditions. Additional uncertainty exists because the FTP and other standard driving
cycles that underlie the MobileSa model may not be representative of on-road driving
behavior. The driving cycles underlying Mobile5a are complete trip based speed profiles.
However, no individual cycle may adequately represent area-wide emissions for a typical

geographic region.

To address the need for more representative uses of driving cycle data, a
probabilistic analysis of driving cycle emissions was carried out using Monte Carlo
simulation features of a probabilistic environment called Analytica. To better predict area-
wide emissions, a new methodology is presented by which data from multiple trip-based
driving cycles can be combined to represent any arbitrary frequency distribution for speed.
This method can be applied to the standard driving cycles used in the vehicle testing
programs by EPA to better simulate on-road driving patterns and represent observed
variations in speeds. Two case studies for vehicles on I-40 were done to demonstrate the
working of this new methodology. The methodology can be extended to consider other
factors affecting emissions, such as acceleration. However, currently, most routinely

deployed traffic detection devices are not capable of recording such information.
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As a bottoms-up approach to the development of an alternative probabilistic version
of Mobile5a, demonstrative model development and case studies were carried out. The
emission factor estimates for light duty gasoline vehicles are based upon data obtained from
laboratory testing of vehicles for selected driving cycles, supplemented with additional data
obtained from inspection and maintenance testing using the IM240 driving cycle. The U.S.
EPA developed a regression model to convert IM240 data to an equivalent FTP basis.
Additional data were collected based upon laboratory testing of selected cohorts of vehicles
for the purpose of developing speed correction ratios. These data sets for selected LDGV
technology groups were obtained and reanalyzed for the purpose of developing
probabilistic estimates of the base emission rate, deterioriation rate, and speed correction
ratios. The probabilistic estimates enable quantification of inter-vehicle variability in
emissions and uncertainty in fleet average emissions. As part of data analysis, alternative
approaches to the development of regression models to describe emissions as a function of
vehicle odometer reading were considered. Because the residual error from linear
regression models, such as those used by EPA, is typically not normally distributed, we

employed log-linear models instead.

The probabilistic emission factor model was employed in case studies to develop
probabilistic representations of emission factors for individual driving cycles and selected
technology groups. The results of the case studies provide insights into the variability in
vehicle emissions; the uncertainty in the mean fleet average and the confidence range on the
mean emissions. The confidence interval analysis shows that the random error on the mean
CO and HC emissions, based on a 90 percent probability range, is approximately 20to 40
percent. The random error on the mean NO, emissions is approximately 25 to 55 percent.
The results also indicate that the point estimates underlying the MobileSa model are
systematically lower than the mean values obtained from the probabilistic estimates. The

probabilistic methods described here enable better usage of emissions test data that has been
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collected at considerable expense. Recommendations regarding the incorporation of a log-
linear base emission rate model; a new speed correction factor model; and the use of
probababilistic methods in genéral will enable development of more realistic emission

factors and inventories.

The probabilistic methodology applied in this study is illustrated via case studies
involving a limited number of vehicle technology groups and only one of the emissions
correction factors used in the Mobile emission factor model. However, the approach is
generalizable, and it should be applied to other components of the Mobile model to obtain a

more complete characterization of uncertainty in highway vehicle emission factors.
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1.0 INTRODUCTION

Highway vehicle emissions comprise a substantial portion of the US national
emission inventory of ozone precursors and carbon monoxide. They are estimated to
contribute 40 percent of US emissions of anthropogenic volatile organic compounds
(VOCs) and nitrogen oxides (NO,) and 60 percent of the carbon monoxide (CO) emissions
(NRC, 1992). However, these numbers may be misestimated due to uncertainties
associated with emissions inventories (Seinfeld, 1988; Gertler and Pierson, 1991; Ingalls,

1989; Guensler, 1993).

Motor vehicle emission inventories are estimated by quantifying emission
producing activities and coupling these activities with activity specific emission rates. For
example, vehicle travel is an emission producing activity quantified in terms of vehicle
miles traveled (VMT). The activity-specific emission rates for vehicles are expressed in
terms of grams of pollutant emitted per mile of vehicle travel (Seinfeld, 1988; Guensler,

1993).

Emission estimates from mobile source activities are summed to develop the total
mobile source emission inventory that is used in air quality planning. The motor vehicle

emissions modeling process consists of:

(1) Quantifying emission producing vehicle activities by using traffic count data, a
travel demand model, or other means of estimation;
(2) Providing data on vehicle, fuel, operating and environmental characteristics to an

emission factor model (e.g., Mobile5a or EMFAC);



3 Running the emission factor model to predict activity-specific emission rates for a
given set of assumptions regarding vehicle technology, fuel, and operating
characteristics; |

4) Multiplying each activity estimate by its appropriate activity specific emission rate;

(5) Summing the estimated emissions for all emission producing activities.

1.1 BACKGROUND

Motor vehicle emission rates are a function of how, and under what conditions,

vehicles are operated. Current mobile source emission factor models create matrices of
~emission rates depending on values of user specified inputs. A number of studies which

compared modeled vehicle emissions to measured pollutant concentrations (e.g., tunnel
studies, on-board instrumentation, etc.) have indicated that the mobile source emissions
models appear to significantly misestimate on-road emissions (Lawson, et al., 1990;
Ingalls, 1989). The speed-related emission rate corrections employed in the federal
emission factor model called MobileSa, have been identified as one of the possible sources

of emission prediction error (Guensler, 1993; NCHRP, 1995).

Emissions data are collected by the Environmental Protection Agency (EPA) and
others during vehicle test programs. In these programs, vehicles are tested over standard
driving cycles. A driving cycle provides a specific pattern of activity (e.g., acceleration,
speed profiles, trip duration etc.). A significant source of inaccuracies in motor vehicle
emission predictions is related to nonrepresentative driving cycle tests used in measuring
vehicle emissions and in developing the existing emission models (CARB, 1992). No
single driving cycle can address the shortcomings of the emission factor model estimates.

Variations in actual driving cycles lead to additional variability in emissions. Furthermore,



there is substantial variability in emissions for any population of vehicles even if they are

operated under similar conditions.

The Federal Test Procedure (FTP) has been the basis for emissions inventory
estimation for over 20 years (Gammareillo and Long, 1993). The frequency distributions
of speeds and accelerations that underlie the FTP may not be representative of actual on-
road driving behavior. For example, the FTP test does not include speeds over 57 mph or
sharp accelerations (i.e., greater than 3.3 mph/s). Some of these “off - cycle” events are
likely to result in conditions that lead to high emission rates. Failure to account for these
and other sources of variability can lead to systematic and random errors in estimating

emission factors.

Previous studies have indicated a number of problems with the current deterministic
emission factor models. The variability and uncertainty in measurements used to develop
the emission factors are often suppressed and/or ignored when data obtained from limited
sampling of emission sources are averaged to develop an emission factor. Therefore, there
is a need to identify and investigate methodologies for using a probabilistic framework in
lieu on the currently employed deterministic approach for developing the emission factors.
This thesis discusses a probabilistic approach which is based upon quantification of key
inputs to EPA’s emission factor model MobileSa, the development of a probabilistic model
and its application to estimate frequency distributions for emissions. The frequency
distributions for emissions are compared to the emiésions estimates that would be made in
absence of the probabilistic approach. A probabilistic framework can provide answers to

the following questions:

(N What is the expected value (mean) of emission factors, and how do these means

compare to the point-estimates currently used?



(2) What is the magnitude of variation in the emissions from one vehicle to another, for
a given set of operating conditions?

(3)  What is the 90 percent confidence range associated with each emission factor?

4) How can the emissions data collected by EPA and others in the annual test

programs be better used to estimate on-road emissions?

By using a probabilistic approach, the uncertainty and variability in the emission
estimates can be displayed. This approach will help improve emission estimates. This in
turn will help regulators take informed decisions about the efficacy of the selected
emissions control strategy in achieving compliance with the National Ambient Air Quality

Standards (NAAQS).

1.2 Overview

An overview of the current and future emission standards and regulations for
mobile source emissions has been included in Chapter 2. The emission factor, activity and
air quality models used to date in many major research efforts are reviewed in Chapter 3.
Features and limitations of these models have been identified. A detailed description of
EPA’s emission factor model Mobile5a is provided in Chapter 4. The primary components
of the model have been described. Two key components of the model, the base emission
rates (BERs) and speed correction factors (SCFs), have been the focus of analysis in this
thesis. The dataset which underlie the speed correction factors are described in Chapter 4
while a detailed analysis of the BERs is described in Chapter 8. Various approaches to
estimating mobile source emissions are discussed in Chapter 5. These include tunnel
studies, remote sensing, representative driving cycle and on-board instrumentation. The
implications of these on-road studies with respect to identifying potential sources of

systematic and random error in emissions factors are discussed. Chapter 6 describes the



basic concepts of uncertainty and variability. The major sources of uncertainty and
variability in mobile source emissions are identified. Chapter 7 focuses on the probabilistic
modeling of the SCF data that underlies the Mobile5a model. This chapter first describes a
new probabilistic version of Mobile5a. A new procedure for probabilistic analysis of the
driving cycles emissions data used to develop the SCFs in Mobile5a model is discussed. A
case study describing the application of the new methodology is included. To gain insight
into uncertainty in the fleet average emission factors and the inter-vehicle variability in the
emissions, each of the individual driving cycles that underlie Mobile5a were analyzed using
alternative probabilistic models. Chapter 8 describes this probabilistic analysis of emission
factors. The results indicate that there are significant sources of systematic and random
errors in estimating emission factors that are not properly captured by current approaches.
The implications of the true results for the development and use of emission inventories are

discussed in Chapter 9.



2.0 EMISSION STANDARDS AND REGULATIONS

In the mid 1950s, California established the first state agency to control motor
vehicle emissions. Motor vehicles are one of the key sources of CO, NO, and VOC
emissions. Complex chemical interactions between NO, and VOC:s result in photochemical
smog and tropospheric ozone. CO is a pollutant with localized impacts. Brief exposures to
CO can impair vision, physical co-ordination and result in significant interference with
essential cardiovascular-respiratory functions. Concern with air quality, including ground
level ozone and CO, increased from the 1960s and led to federal and state motor vehicle
standards for emissions of HCs, CO and NO,. California and the federal government set
ambient air quality standards for ozone, CO, NO,, etc. By 1988, emissions per VMT for
new cars and light trucks had been decreased by roughly 90 percent from the uncontrolled
level. Total VMT, however, increased 2.3 percent annually during the 1970s and 1980s,

thereby offsetting some of the improvement (Atkinson et al., 1990).

2.1 Clean Air Act

The Clean Air Act was signed in 1963. Major amendments were made to it in
1970, 1977, and 1990. The act establishes the federal-state relationship that requires the
EPA to develop the NAAQS and empowers the states to implement and enforce regulations
to attain them. EPA established NAAQS for each of six criteria pollutants: sulfur dioxide,
particulate matter, nitrogen dioxide, carbon monoxide, ozone, and lead. The NAAQS are
threshold concentrations based on a detailed review of the scientific information contained
in the criteria documents prepared by EPA. Pollutant concentrations below the NAAQS are
“expected to have no adverse effects on the environment or human health. For each criteria
pollutant, the NAAQS are comprised of a primary standard, which is intended to protect

public health with a margin of safety, and a secondary standard, which is intended to



protect the public welfare as measured by the effects of the pollutants on vegetation,
materials and visibility (NRC, 1992). Table 1 shows the most recent (1990) NAAQS for

the criteria pollutants.

In the Clean Air Act Amendments (CAAA) of 1970, the Congress set 1975 as the
deadline for meeting the NAAQS. The 1977 CAAA delayed compliance with the ozone
and CO NAAQS until 1982. Areas that demonstrated that they could not meet the 1982
deadline were given extensions until 1987. In 1990, there were 96 areas in the US which
were not in attainment of the ozone NAAQS (EPA, 1990). The 1990 amendments classify
non-attainment areas according to the degree of noncompliance with the NAAQS. The
classifications are extreme, severe, serious, moderate, or marginal, depending on the
percentage by which the ambient concentration of pollutants is greater than the NAAQS
(NCHRP, 1995). Table 2 shows the classification of the levels of non-attainment and the .

corresponding deadlines for meeting the ozone and CO NAAQS.

2.2 Regulations for Tailpipe Exhaust Emissions

The CAAA of 1990 contains many features, with seven separate titles covering
different regulatory programs. Title Il impose more stringent regulations on automotive
emissions with the intention of reducing the ambient ground-level ozone and CO
concentrations in areas of the United States that did not meet the ambient air quality
standards. Specific measures required under the new regulations are more stringent

controls on automotive emissions, alternative clean fuels, and others.

Title II established stringent tailpipe emissions standards for non methane
hydrocarbons (NHMC), CO, NO,, and particulate matter for passenger cars and light
trucks of 6000 pounds gross vehicle weight (GVW) rating or less (NRC, 1993). The



CAAA of 1990 provide for two tiers of emission standards. The first set of requirements
(Tier I) are to be phased in beginning with the model year (MY) 1994, and 100 percent
compliance is to be achieved by MY 1996. The Tier I standards call for a 35 percent
reduction in tailpipe HC and a 60 percent reduction in NOx compared to MY 93 standards.
For example, the NO, standard would be reduced from 1.0 grams/mile (g/mi) to 0.4 g/mi

by MY1996. The Tier I CO remains unchanged from the 1993 level.

The emission standards (both evaporative and tail‘pipe) from 1968 through 1993
motivated many technological innovations. Amongst these were: positive crankcase
ventilation; ignition timing controls; exhaust gas recirculation; catalytic converter systems;
fuel injection systems; activated charcoal canisters; computer-based sensors; and engine
controls (Black 1991). Compliance with the Tier [ standards can be achieved with full

implementation of these technological innovations.

The Tier II standards would cut the Tier I standards for HC, CO and NO, in half.
By the end of 1999, the EPA will determine the need, cost, and feasibility of Tier II |
standards for vehicles produced for MY 2004 and thereafter. The Tier II standards may be
implemented if the EPA concludes that there is a need for further mobile source emission
reductions (Ross et al., 1995). Table 3 gives the current and planned Passenger Car

Emission Standards.

Compliance with the emission standards is determined by measuring the emissions
performance of cars under highly controlled conditions specified in the FTP. Details of the
FTP are published in the Code of Federal Regulations (40 CFR 86) and have remained
unchanged since 1975. As part of the FTP, cars are driven on a chassis dynamometer
using a prescribed speed-time sequence, which is referred to as a driving cycle. The speed-

time profile of the FTP cycle is shown in Figure 1. The associated exhaust emissions are




captured sequentially in three bags. Bag I is the cold start bag and is intended to measure
the elevated tailpipe emissions that occur during the first several minutes of driving after
start-up following an overnight rest or “soak”, when the vehicle engine and the catalytic
converter have cooled to ambient temperatures of around 70° F. Bag 2 captures the
emissions from the wanned:up or hot stabilized driving, during which the emissions
control system is fully functional. Bag 3 determines the emissions level during the several
minutes following start-up after the vehicle has soaked for only 10 minutes (Ross et al.,

1995).

The manufacturers measure and report to the EPA the FTP emissions for CO, HC
and NO,_ and compare these to the standards.. The CAAA of 1990 directed the EPA to
revise the FTP as necessary to more accurately reflect the manner and conditions under
which the cars are actually driven. In February 1995, the EPA published a notice to revise
the FTP. The revisions to the FTP are referred to as the Supplemental FTP (SFTP). The
SFTP includes three additional bags which measure emissions from five kinds of driving
behavior not represented in the original FTP. They are: aggressive driving episodes and |
rapid speed fluctuations (Bag 4); driving behavior immediately following start-up (Bag 5);
and driving with the air conditioner on and intermediate duration soaks of an hour (Bag 6)
(USEPA, 1995). Emissions can be much higher for speeds and accelerations outside the
range of the current FTP (NRC, 1992). The use of the SFTP as a certification standard
instead of the FTP is likely to lead to an increase in the measured emissions from vehicles
tested on the SFTP. This in turn will require an increase in the percentage of emission
reduction required if the regulatory emission limits are unchanged. Therefore, the new

emission standards based upon the SFTP would be more stringent than the current ones.



2.3 California Standards

California has established emission standards that are more stringent than the
federal standards. California’s standards impose emission levels for five categories of
vehicles: (1) conventional vehicles (CVs); (2) transitional low-emission vehicles (TLEVs);
(3) low-emission vehicles (LEVs); (4) ultra-low emission vehicles (ULEVs); and (5) zero-
emission vehicles (ZEVs).! Table 4 shows California’s Passenger-Car Emissions
Standards. Given the problems with marketing cars with different standards in different
states, all automobiles may be designed to meet the more stringent emissions standards if
they become widely accepted, even though air quality conditions differ from region to
region (NRC, 1993). This could mean that regulations in California may drive research

and development of new control technologies which could be used nationally.

2.4 Conformity

Conformity analysis is required for federally funded transportation plans, programs
and projects. Conformity analysis involves demonstrating a net improvement in air quality
as a result of implementation of a proposed transportation project. The EPA published a
final rule in the November 24, 1993 Federal Register (58 FR 62188) that finalized the
procedures to be followed by the US Department of Transportation in determining
conformity. The conformity regulations require that nonattainment and maintenance areas
prepare analyses for Baseline and Action scenarios. “Baseline” scenarios contain current or
existing transportation plans. “Action” scenarios include Transportation Improvement
Programs (TIPs) that are proposed to be completed in a future year. Conformity criteria

requires that the emissions from the Action scenario should be less than the emissions for

' Note that ZEVs, such as electric cars, are misnamed and cause shifts of emissions from
mobile sources to stationary sources (e.g., power plants).
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the Baseline scenario for the same year (NCHRP, 1995). An important source of
information for conformity analysis is highway vehicle emission factors. Errors in these
factors may lead to potentially misleading results regarding whether an improvement may

occur as a result of a TIP.

2.5 Discussion

Accurate emissions data are needed to predict ambient pollutant concentrations (wrt
NAAQS) and to evaluate the benefits of transportation projects. Errors in the data lead to
wrong conclusions. For example, a TIP may have no significant impact on air quality even
though models used to predict those impacts say that it does. To understand the air quality
modeling process, the currently used models for mobile source emissions are described in

the next chapter.
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Table 1. National Ambient Air Quality Standards.
Source: Seinfeld, 1986.

Pollutant Primary Standard Secondary Standard
0, 240 pg/m’ over 1 hour average. 240 pg/m’ over 1 hour average
CcO 10 mg/m* on an 8 hour average. 40 mg/m’* over 1 hour average
NO, 100 pg/m® maximum mean annual | 100 pg/m® maximum mean annual
concentration. concentration.
SO, 80 [g/m’ maximum mean annual 1300 pug/m’ on a 3 hour average.
concentration or 365 pg/m® on a 24
hour average.
Particulate | 75 10/m® maximum mean annual 60 pg/m’ maximum mean annual
Matter concentration or 260 pug/m’ on a 24 | concentration or 150 pg/m® on a 24
(PM 10) » hour average. hour average
Lead 1.5 pg/m’® on a quarterly average.

1.5 ug/m’ on a quarterly average

Table 2. Classification of Level of Non Attainment of NAAQS

for Ozone and CO.
Source: (NCHRP, 1995)

Pollutant Classification Design Value (ppm) Attainment Deadline

Marginal 0.121 up to 0.138 11/15/1993

Moderate 0.138 up to 0.160 11/15/1996

Ozone Serious 0.160 up to 0.18 11/15/1999
Severe | 0.18 up to 0.19 11/15/2005

Severe 2 0.19 up to 0.28 11/15/2007

Extreme 0.28 and above 11/15/2010

Moderate ' 9.1upto 12.7 12/31/1995

CO Marginal 12.8 up to 16.4 12/31/1995
Serious 16.5 and above 12/31/2000
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Table 3. Passenger-Car Emission Standards, CAAA (1990)
Source: (NRC, 1993)

Gasoline Engines Diesel Engines
Standard NMHC 60) NO, PM NO,
(g/mi) (g/mi) (g/mi) (g/mi) (g/mi)
Current (1991) 04IT 3.4 1.0 0.2 1.0
Tier I 0.25(0.31) | 3.4 (4.2) 0.4 (0.6) 0.08 (0.1) 1 (1.25)
Tier I (0.125) (1.7) (0.2) (0.08) (0.2)

Note: NHMC - nonmethane hydrocarbons, T = total hydrocarbons,

Standards are for 5 years/50000 miles and for up to 3750 pounds loaded vehicle weight.
Tier I standards are to be achieved by MY 1996 and Tier II would apply to MY 2000 and
beyond, if it is imposed. Standards for 10 years/100000 miles are shown in parenthesis.

Table 4. California’s Passenger Car Emission Standards

Source: (NRC, 1993)

Engines Gasoline Engines Diesel
VEHICLE NMOG CO NO, PM
CLASS (g/mi) (g/mi) (g/mi) (g/mi)
93 base 0.25 (0.31) 3.4 (4.2) 0.4 (0.08)
TLEV 0.125 (0.166) 3.4 (4.2) 0.4 (0.6) (0.08)
LEV 0.075 (0.090) 3.4 (4.2) 0.2 (0.3) (0.08)
ULEV 0.040 (0.055) 1.7 (2.1) 0.2 (0.3) (0.04)
ZEV 0 0 0 0

Note : NMOG = nonmethane organic gases; TLEV = transitional low-emission vehicle;
LEV = low-emission vehicle; ULEV = ultra low-emission vehicle; ZEV = zero-emission
vehicle. Standards are for 5 years/ 50000 miles. Standards for 10 years/100000 miles are
shown in parenthesis. These standards are for up to 3750 pounds loaded vehicle weight
(curb weight plus 300 pounds). For 1993 base, NMOG = nonmethane hydrocarbons

only.
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3.0 REVIEW OF EXISTING MODELS FOR MOBILE SOURCE
EMISSIONS

Air quality studies and state implementation plans require accurate information on
emissions of ozone precursors so that the causes of air pollution can be understood and
effective plans can be developed for future air quality improvement. The prediction of
changes in peak pollutant concentrations with changes in mobile source emission is
essential to be able to assess if a region is in compliance with the air quality standard at
some future date. Motor vehicle emissions result not only from tailpipe exhausts but also
from evaporation of fuel from the "fuel tank- engine system" and running losses. Also, the
total emissions from mobile sources depends critically upon the mode of operation of the
vehicle, the ambient conditions (e.g., ambient temperature, etc.) and the state of repair and
maintenance of that vehicle. Therefore for predicting the air quality impacts of mobile
sources, models for mobile emission inventories (e.g., Mobile5Sa, EMFACTF, PARTS) are
used in conjunction with air quality models (e.g., CALINE4, CAL3QHC, PALS, UAM,
EKMA) and activity models (e.g., TRANPLAN, BURDEN7F). A more complete review
of emission mechanisms and the control systems is given in Appendix C. The focus in this

report is on tailpipe emissions of gaseous pollutants.

3.1 Mobile Source Emission Factor Models

Emission factor models, such as Mobile5a and EMFACTF, estimate the rate at
which different pollutants such as CO, NO, and VOCs are emitted in grams per VMT for
various class of vehicles. The vehicle classes are described in Table 5. The emission factor
models are based upon data from tests of vehicle emissions. For example, Mobile5a uses
measured emission rates from a sample of vehicles tested in laboratories. These vehicles

were tested on the FTP and other driving cycles. In some tests, selected test parameters
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(e.g., temperature, fuel properties) were varied to evaluate the sensitivity of emissions to
such changes. The data were used to develop base emission rates and emission correction
factors in the emission model. While the emissions data underlying the models is based
upon laboratory or other tests, the models are often used to make estimates of emissions for
on-road vehicles. Therefore, the model attempts to account for on-road conditions such as
the operating mode of vehicles (e.g., cold start, hot transient or hot stabilized); average
speed of vehicles; the environmental conditions (e.g., ambient temperature),
implementation of inspection and maintenance (I/M) programs and others. Emission factor
models also incorporate information on the age distribution, the annual mileage accrued by
each vehicle type and the percent of VMT mix attributed to each vehicle class in order to
calculate the final emission factors (NCHRP, 1995; Sierra 1994; SAIL, 1994; CEPA,
1993a).

Emission factors are typically defined for two broad categories of emissions:
exhaust emissions; and evaporative emissions. The exhaust emissions are often further
subdivided in to three processes which are: cold start; stabilized running (hot stabilized);
and hot start. The evaporative emissions are subdivided in to four processes including hot

soak emissions, diurnal emissions; resting losses; and evaporative running losses (NRC,

1992).

A detailed description of EPA’s emission factor model, Mobile5a, and a new
probabilistic version of the model, is given in Chapters 4 and 7 respectively. The emission
factor model used by the California Air Resources Board (CARB) is called EMFAC.
PARTS5 is an EPA approved model that is used to calculate fugitive dust emission factors.

A brief description of EMFAC and PARTS is given below.
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3.1.1 EMFAC

EMFAC was developed by the CARB for estimating on-road motor vehicle
emissions. The data that provides the basis for EMFAC are obtained from extensive testing
of motor vehicles conducted by the CARB and the EPA. Testing is performed using
standardized test cycle conditions as well as non-standardized conditions. These latter tests
are used to develop correction factors to the standardized test cycle results such that on-road

conditions of operating mode, speed, and temperature can be approximated.

EMFAC calculates hot and cold start emissions separately from hot stabilized
emissions. EMFAC differs from Mobile5a because it uses California-specific emission
rates. EMFAC contains air basin-specific assumption values for various inputs including
IM, anti-tampering and vehicle mileage and age distribution data which are different from

those used by Mobile5a.

The latest version of EMFAC is EMFACTF. This version produces composite
emission factors for the following six pollutants: total organic gases; carbon monoxide;
oxides of nitrogen; exhaust particulate matter; particulate matter due to tire wear; and

evaporative emissions (CEPA, 1993a).

3.1.2 PARTS

Particulate matter with characteristic diameters less than or equal to 10 microns
(PM,,) is a product of combustion, machinery and wear of tires and brake linings, and
facility and road conditions. PARTS is an EPA model that calculates PM,, emission factors
in grams per mile from automobiles, trucks and motorcycles for particle sizes up to ten

micrometers. The PM,, emission factors include exhaust particles, brake wear, tire wear
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and re-entrained dust. All of these are required for PM,, inventories and analyses. This
model supersedes previously used AP-42 emission factors. The inputs required by this
model include: overall fleet average vehicle weight; overall fleet average number of wheels
per vehicle; average vehicle speed; roadway silt loading characteristics; atmospheric and

meteorological conditions; and VMT mix and mﬂeage accumnulation rates (NCHRP, 1995).

3.2 Activity Models

The activity data used to calculate the inventory estimates include VMT, vehicle
populations, trips taken (with hot and cold starts distinguished), average vehicle speeds,
and ambient temperature. The sources and development of these motor vehicle activity data

are discussed in the following sections:

3.2.1 Vehicle Populations

The motor-vehicle registration department in each state and local jurisdiction
maintain areawide aggregate data. Vehicle populations are estimated based on this data.
Typically, this data contains registration distributions by age for different vehicle types,
sales fractions by model year, the fraction of travel by each vehicle that is typical of urban

areas, and the total fleet size by vehicle type (NCHRP, 1995; CEPA, 1993b).

3.2.2 Vehicle Miles Traveled (VMT)

There are two approaches to estimation of VMT that are acceptable to EPA for
areawide emissions estimation. These are Highway Performance Monitoring System
(HPMS) and network-based travel demand models (Harvey and Deakin, 1992). Typically,

24- or 48-hour traffic counts are taken on road segments once every three years. These
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counts are then adjusted, based upon day-of-week and season, to annual averages from a
small number of traffic recorders such as loop detectors. “Axle correction factors” are also
incorporated in this HPMS sample, to account for large trucks in traffic. Once the Base
Year VMT is qstimated, future year VMT are determined using growth rates based on

trends in VMT in the past (NCHRP, 1995).

VMT estimates can also be obtained from transportation planning models. The
aggregate VMT estimates that are produced from transportation planning models (e.g.,

TRANPLAN) must be consistent with HPMS estimates (NCHRP, 1995).

3.2.3 Vehicle Trips

Vehicle emissions are significantly higher, especially for HC and CO, when a cold
engine is first started than after the vehicle is warmed up. Therefore, the determination of
the operating modes is important in order to accurately predict fleet emissions. This is
because the emissions control systems such as the catalytic converter do not provide full

control until they reach operating temperature (Sierra, 1994).

Estimates of the percentage of each vehicle trip that is in cold start, hot stabilized
and hot start mode is a complex task. Determination of operating mode (e.g., hot or cold
starts) of a vehicle requires measurements of engine temperature, and such measurements
are difficult to implement (NCHRP, 1995) In 1984, field data were collected as a part of a
New Jersey study in which vehicles were stopped and roadside measurements of engine oil
and coolant temperature were taken. Estimates of engine run time was obtained from the
drivers. The data were analyzed to develop operating mode fractions (Brodtmen and Fuce,
1984). Extensive information for estimating the proportion of VMT occurring in cold start

mode by time of the day, trip length and trip purpose is provided by Ellis et al., (1978).
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Another method of estimating the operating modes of vehicles is through the use of
computer models for network analysis and traffic assignment. An example os such a
model is the Traffic Assignment Program for Emission Studies (TAPES). This model
simulates the elapsed time of interzonal trips as they are assigned on each link along their
path of travel (Venigalla, 1994). The duration of the “cold start” portion of the FTP cycle
(Bag 1) is 505 seconds. In the model, this is assumed to be representative of the cold start
time for all vehicles. Based on the duration of the FTP Bag 1, the assigned volume on a
link can be classified as transient or stabilized depending upon whether the elapsed time
from the origin of the trip exceeds 505 seconds or not. Other travel modeling programs
like MINUTP and EMME/2 also have this capability but their use for the purpose of
developing operating mode fractions has been limited. Venigalla et al. (1995) tested the
TAPES software with travel and network data for Charlotte, NC and found that the
estimated operating modes varied considerably by functional class of roadways (e.g.,
urban or rural interstate, primary arterial, minor arterial, federal collector street, etc.)
location of roadway facility within an urban area, and the time of day of travel. In another
study, Venigalla et al. (1995) analyzed data available from the Nationwide Personal
Transportation Survey (NPTS) to develop operating mode fractions. As a result of the
complexity involved in estimating the operating mode distributions, the state of practice is
to use default values of operating mode fractions for all functional road classes. These
default values of operating modes are: 20.6 percent for cold transient mode, 27.3 percent
for the hot transient mode and 52.1 percent for the hot stabilized mode, based on the FTP
driving cycle (NCHRP, 1995). However, the use of these operating fractions on

interstates or primary arterials would be inappropriate.
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3.2.4 Vehicle Speed Distribution

There are a wide variety of speed measures used by transportation engineers for
different purposes. Spot speeds represent the instantaneous speed as a vehicle passes a
given point on the roadway. Running speeds measure the average speed over a section of
roadway, while the vehicles are in motion. Average travel speeds along a route segment
represents the overall speed including delays. Mobile5a is calibrated based on average

speed values of deriving cycles used for exhaust emission rates (NCHRP, 1995).

A standard practice in planning work is to estimate the speed on a link using a
speed-flow curve such as the Bureau of Public Roads (BPR) curve. Chapter 11 of the
1985 Highway Capacity Manual contains a method for determining average speeds on the
basis of free flow speeds, intersection spacing, signal timing and functional class (HCM,

1985).

Vehicle travel speed can also be computed by the analytical process described in
traffic simulation models such as the HPMS. The HPMS estimates average travel speeds in
miles per hour for various vehicle types, classes of roads and geographic areas, and other
strata by incorporating several factors such as speed change and stop cycles, idle time,

pavement and geometric characteristics.

Other methods of calculating speeds include empirical observations, using spot
speeds, running speeds, video surveillance and loop detectors. Spot speeds represent the
instantaneous speeds as a vehicle passes a given point on the roadway. Running speeds
measure the average speed over a section of a roadway, excluding events in which vehicles

are stationary. The method for calculating speeds varies among relevant state transportation

- departments (NCHRP, 1995).
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3.3 Air Quality Models

Air Quality models are mathematical descriptions of atmospheric transport and
chemical reaction of pollutants. They operate on sets of input data characterizing the
emissions, topography and meteorology of a region. A practical model typically consists
of four structural levels (Seinfeld, 1986):

() A set of assumptions and approximations that reduce the actual physical
problem to an idealized one that retains the most important features of the
actual problem. This involves the conceptual formulation of the model.

(2) The basic mathematical relations that describe the idealized physical system.

(3) The computational schemes that are used to solve the basic equations.

(4) The computer program that actually performs the calculations.

The term “model” can be used to apply collectively or separately to all four
functional levels. Models that focus on a group of interacting processes are called

"modules."

Air quality models can be classified as prognostic or diagnostic. The models which
are based on the fundamental physiochemical principles governing air pollution are called
prognostic models while those which involve statistical description of observed air quality

data are called as diagnostic models( Seinfeld, 1988).

Prognostic models can be further classified as Eulerian or Lagrangian. Eulerian
models use what is called a “moving coordinate” approach to describe pollutant transport.
In Eulerian models, the reference point of the coordinate system moves with the moving air

mass. In contrast Lagrangian models use a fixed coordinate approach to describe pollutant
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transport. A Gaussian Plume model is an example of a Lagrangian model. In these
models, air masses move with respect to the coordinate system. Lagrangian models based
upon numerical simulations of the physics and chemistry within user specified cube of air

are called Grid models.

Gaussian Plume models such as Caline4, CAL3QHC and PALS are used in
mobile-source related CO analyses. These models calculate how pollutants are dispersed
by representing the relationships between various meteorological, transportation, emission
and other site specific information, in the form of mathematical equations (Seinfeld, 1988;
NCHRP, 1995). Plume models are appropriate for short range transport of relatively
unreactive pollutants. More complex grid-based models are needed to simulate the

photochemistry of ozone formation.

Photochemical air quality models are used in determining the emission controls
needed to attain the ozone NAAQS. EPA guidelines identify two photochemical models: a
trajectory model called EKMA and a grid-based model called UAM. All of these air quality

models are described in the following sections.

3.3.1 Caline4d and CAL3QHC

CAL3QHC is the EPA-required dispersion model that is to be used in modeling
emissions at intersections. Caline4 is a line source dispersion model, designed by the
California Department of Transportation (CDOT), to predict the air pollutant concentrations
near highways and arterial streets due to emissions from motor vehicles operating under
free flow conditions. Both of the models are based on the Gaussian diffusion equation and
employ a mixing zone concept to characterize pollutant dispersion over the roadway

(Benson, 1989; USEPA, 1992).
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CAL3QHC works by considering a roadway intersection as a series of links, on
which vehicles are in different modes of operation. The model calculates average queue
lengths over the specified time interval. In the accepted procedure, different emission
factors from the Mobile model are then applied, based upon whether vehicles are in idling
(queued) or free flow mode. However, this procedure represents an incorrect use of

MobileSa. This is because Mobile5a provides trip-based average emission factors.

3.3.2 PALS

The Point, Area, Line, Source (PALS) model is recommended for modeling CO
emissions in parking areas including multilevel parking garages. Each level in a multi-level
parking deck can be treated as an individual elevated area source as long as the cumulative

effect of the emissions at levels closer to the entrance and exit levels are taken in to account.

3.3.3 EKMA and UAM

The Urban Airshed Model (UAM) and the empirical kinetic modeling approach
(EKMA) are the EPA-recommended photochemical models for estimating attainment with
the NAAQS for ozone. The three dimensional, grid-based air quality models such as UAM
are used for ozone non-attainment areas designated as éxtreme, serious or severe (EPA,
1991). The region to be modeled is bounded on the bottom by the ground and on the top by
an inversion base or some other height that characterizes the maximum éxtent of vertical
mixing. The space being modeled is subdivided in to a three dimensional array of grid
cells. The horizontal dimensions of each cell are usually a few kilometers for urban

applications. Older grid-based models assumed only a single, well mixed vertical cell
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extending from the ground to the inversion base. Current models subdivide the region in to

layers (Seinfeld, 1988).

EKMA, which is also used to demonstrate ozone NAAQS attainment, simulates
urban ozone formation in a hypothetical box of air that is transported from a region of most
intense source emissions to a downwind point of maximum ozone accumulation.
Emissions of VOCs and NO, are assumed to be well-mixed in the box. The height of the
box can be varied to represent changes in the height of atmospheric mixing. Ozone
formation is simulated using a photochemical mechanism. By simulating an air mass as a
box of air over its trajectory for a large number of combinations of initial VOC and NO,
concentrations, EKMA generates ozone isopleths (lines of constant value) specific to
particular cities. Once the maximum ozone concentration in the city is identified, VOC and
NO, reductions needed to achieve NAAQS are determined from the distance along the VOC
and NO, axes to the isopleth that represents 120 ppb peak ozone concentration mandated by

the NAAQS (NRC, 1992).

The use of models described above to predict ambient pollutant concentrations is

summarized in the next section..

3.4  General Procedure for Air Quality Modeling

As described in NCHRP (1995), the procedures employed in the development of

pollution estimates using the emission factor, activity and the air quality models are:

(hH Determine the level of spatial and temporal resolution required (e.g., for dispersion

models, information must be provided on an hourly, gridded basis);
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(2)

3)

4)

(3)

(6)

(7)

8)

Determine total VMT by functional class of roadway;

Develop growth factors and predict future-year VMT;

Develop emission factors based on the rates at which different pollutants are emitted

per VMT by various types of vehicles in various operating modes;

Multiply these emission factors by calculated VMT to determine total mobile-source

emissions for the non-attainment region;

Determine emissions from area sources and point sources to calculate the total

emissions for the non attainment region;

Determine meteorological, boundary and terrain data that are used as inputs,

together with the total emissions, by dispersion models; -

Determine the ambient pollutant concentrations.

The accuracy of the final emissions estimates is linked strongly to the

methodologies and algorithms employed by the emissions-factor models such as Mobile5a.

Any error in the input assumptions of the analysis is propagated from the start of the

modeling procedure to the final emission estimates (NCHRP, 1995). Therefore, it is

important to revisit the data used for developing the model and to carry out analyses to

determine the nature of uncertainty and variability in the emission factor models like

Mobile5a. The next chapter addresses the basic concepts in uncertainty and variability and

discusses those issues in relation to mobile source emission estimates.
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Table 5. Model Year and Technology Groupings for Speed Factor
Development

Source (EEA, 1991)

 Tech | Model Year| Fuel Metering * Fuel Control Tatalyst Type ‘
Group
No.
I 981+ | Carbureted OL 3W+0, O
1981+ Carbureted CL 3w
3 1981-82 PFI, TBI CL 3W,3W+0
4 1981-82 Carbureted CL 3W+0
5 1983 + Carbureted CL 3W+0
6 1983-86 TBI CL 3w
7 1983-86 TBI CL 3W+0
8 1987+ TBI CL 3w
9 1987+ TBI CL 3W+0
10 1983-86 PFI1 CL 3w
11 1983-86 PFI CL 3W+0
12 1987+ PFI CL 3w
13 1987+ PFI CL 3W+0
PFI = Port Fuel Injection, TBI = Throttle body Fuel Injection.
OL = Open Loop, CL = Closed Loop.
3W = three-way catalyst, 3W+O = Dual Bed Catalyst, O = oxidation catalyst.
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4.0 EPA’s EMISSION FACTOR MODEL: Mobile5a

MobileSa calculates errﬁssion factors for HC, CO, and NO, from eight separate
classes of on-road motor vehicles. These vehicle classes are listed in Table 6. The
emission factor estimates are typically generated for the entire on-road fleet of vehicles in a
metropolitan area, and the results are used to prepare emission inventories, evaluate control

measure effectiveness, and to determine compliance with federal regulations (Heirigs and

Dulla, 1994; Sierra, 1994; SAI 1994).

4.1 Basic Structure of Mobile5a

MobileSa calculates emission rates for each vehicle class in gram/miles by
determining the emission rate of each model year making up the vehicle class, weighting
the model-year specific emission rate by fractional usage (i.e., VMT or travel fraction), and
summing over all model years that comprise the vehicle class. In addition, a variety of
corrections are applied to the BERs to account for conditions not included in the standard
test procedures used to develop the base emission rates. For example, exhaust emission
rates can be adjusted for nonstandard driving cycle average speeds using SCFs, and
evaporative emissions can be corrected for differing fuel volatility and temperature using

temperature correction factors (TCFs) (Heirigs and Dulla, 1994; Sierra, 1994; SAI, 1994).

The Mobile5a model calculations can be summarized by the following equation:

n L
EFj,k =2 {fVMT,m .(BERj‘k.m o1 CFj.kJ.m)} ()
m=1 1=1
where
j = pollutant (e.g., CO, HC, NO,);
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k = emissions process (i.e., exhaust, evaporative);

| = correction factor (e.g., speed, temperature, deterioration
rate);

L = total number of correction factors.

m = model year;

n = total number of model years;

EF,, = fleet-average emission factor for pollutant j, and process &;

fomrm = fractional VMT attributed to model year m (the sum of £,

over all model years 7 is unity);

BER,, .= base emission rate for pollutant j, process &, and model year
m.
[ICf,y = product of correction factor(s) for pollutant j, process k, and

model year m; over index /.

The sum is carried out over the number of model years, n, making up the vehicle
class (e.g., typically 25 model years for light duty gasoline vehicles (LDGV) in Mobile5a).
The process is repeated for all eight vehicle classes, and the resulits are weighted by the
travel fraction associated with each class and summed over all classes to develop a fleet-
average emission rate (Heirigs and Dulla, 1994; SAI, 1994; Sierra, 1994). Typical inputs
used include tampering rates, average vehicle speed, the daily temperature profile, typical
vehicle operating modes, the distribution of vehicle ages and the types and nature of any

applicable inspection programs (USEPA, 1992).

4.2 The Mobile Exhaust Base Emission Rates

In the previous versions of the MOBILE model, data used for BERs were collected

by surveillance testing wherein the vehicle owners were randomly contacted and asked to
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give up their cars for a week of testing. However, the EPA felt that the vehicles from the
surveillance testing were not representative of the in-use fleet. Specifically there was
concern regarding under-representation of poorly maintained, high emitting vehicles. The
survey of vehiples used to develop some components of the Mobile5a model may have
suffered from self—selectior; bias. For example, the vehicle owners of poorly maintained,
high emitting vehicles may not have volunteered to submit their vehicles for testing in
proportion to their numbers in the general population. To overcome this sample bias, EPA
used IM240 emissions data collected during the initial two years of a mandatory /M

program in Hammond, IN, to develop the exhaust BER equations for Mobile5a.

The Mobile5a model is primarily based upon the FTP cycle. All of the correction
factors in the model are based upon the FTP cycle. Thus, the BERs in Mobile5a are also
required to be based on the FTP. The IM240 cycle consist of Bag 2 and Bag 3 portions
from the FTP cycle (Heirigs and Dulla, 1994). Therefore, for obtaining the BERS in
Mobile5a, the IM240 data were converted to an equivalent FTP basis using regression
models. Data for these models was developed by testing approximately 646 vehicles on
both the FTP and IM240 cycles. For HC and CO, the emissions data were log transformed
because the emissions varied by more than an order of magnitude. Thus, a log-log
regression was done to develop a relationship between the average IM240 and FTP
emissions. The NO, regressions were based on a linear model because NO, emissions did

not display as much variation as did HC and CO emissions.

The IM240 does not include a cold start as represented by Bag 1 of the FTP. Thus,
the IM240 test is conducted with vehicles in a warm stabilized condition. Therefore, the
regression models developed for HC and CO include a “cold start offset.” The cold start
offset is intended to be the difference between the cold start emissions and the average of

Bags 2 and 3. Cold starts do not have a discernible effect on the NO, emissions.
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Therefore the regression model for NO, does not include a cold start offset. The HC and
CO transformations from IM240 to FTP were developed according to the following log-log

regression equation:

Log (FTP-X) = b+ meLog (IM240) (2)

where
X = The cold start offset in the FTP cycle (g/mi)
b = the intercept from the regression analysis

m = the slope from the regression analysis

In Mobile5a, the BERs are expressed in the form of linear equations which relate
the emissions rate to the “mileage accumulation.” The latter is the odometer reading of the
tested vehicles. The linear equations include a zero mile level (ZML) and one or two
deterioration rates (DR),or slopes, which represent the expected increase in emissions per
10,000 miles of accumulated mileage. The baseline emission factors by model year in
MobileSa are estimated by a companion program called TECHS. As in Mobile5a, the
emissions data are classified in TECHS by emission standard and technology groups. The
technology groups include closed-loop carbureted (CARB/CL), closed-loop multiport fuel-
injection (MPFI/CL), closed-loop throttle-body injection (TBI/CL), and open loop. The

data are then aggregated in to four basic emitter groups or regimes. The four emitter

groups are:
. Normal: <2 x HC Std. and £ 3 x CO Std.
° High : >2x HC Std. or > 3 x CO Std.
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. Very High: >4 X HC Std. or > 4 x CO Std.

° Super : > 10 gm/mile HC or_> 150 gm/mile CO

Thus, vehicles having HC emissions less than or equal to 2 times the applicable standards
(see Table 3) and CO emissions less than 3 times the applicable standard are classified as
normal emitters. For NO_, the model classifies vehicles in only two emitter categories viz.

normal (< 2 gm/mile) and high (>2 gm/mile).

The BERSs as a function of vehicle mileage are determined by multiplying the -
emission rate of each emitter category by the fraction of each category making up the fleet at
the corresponding mileage intervals. Both the emitter category emission rates and growth
functions (i.e., change in the mix of normals, highs, very highs and supers with mileage)
for MobileSa were developed from the data collected in the Hammond program. BERs for
each model year are generated by weighting the technology-specific emission rates by the
fraction of each technology in the fleet. Thus, each model year base emission rate equation
is a combination of up to four technologies (i.e., MPFI/CL, TBI/CL, CARB/CL, and open
loop) and four emitter categories (i.e., normals, high, very high, and supers) (Heirigs and

Dulla, 1994; SAI, 1994; Sierra, 1994). The functional form of the BERs in Mobile5a is

ZML +DRieMA; MA <50,000 miles

BER =
{ZML +DR1¢50,000 + DR2 ¢ (MA -50,000); MA = 50,000 miles

3)

where:
BER = Base Emission Rate (g/mi.)
ZML = Zero mile Level (g/mi.) obtained as the Y- intercept of the mileage

accumulation regression equations used to develop the BERs.
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DR1 = Deterioration Rates (g/mi/10,000 mi) obtained as the slope of the mileage
accumulation regression equations for mileage accumulation less than
50,000 miles.

DR2 = Deterioration Rates (g/mi/10,000 mi)obtained as the slope of the mileage
accumulation regression equations for mileage accumulation greater than
50,000 miles.

MA = Mileage Accumulation (10,000 mi)

4.3 Correction Factors

The BERs in MobileSa are adjusted to deal with differences in driving cycles,
temperature and vehicle characteristics compared to the standard FTP. In some cases, the
correction factors are developed by comparing the measured emission factors for the same
vehicles operating under alternative conditions. In other cases where the same vehicle was
not available for tests under alternative conditions, the correction factors are developed
based upon comparison of similar groups of vehicles. In these cases, the ratio of the
average emissions under the alternative conditions to the average emissions for the standard
conditions is used to correct the BERs. For example, if vehicles tested on the FTP at 105 °
F had average HC emissions twice that of the same group of vehicles tested at 75 °F, then |
the temperature correction ratio would be 2. To estimate emission factors at 105° F, the
BER for that subgroup of the fleet would be multiplied by a correction factor of 2 (SAI,

1994).

Previous studies have indicated that there is a significant uncertainty associated with
the SCFs in Mobile5a (Guensler, 1993, NCHRP, 1995). This motivates a need for re-
analyzing the SCF used in Mobile5a. Therefore, this report has focused on analyzing
SCFs in Mobile5a. The next section describes the SCF in Mobile5a. A detailed analyses
of the SCF data is described in Chapters 7 and 8.
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4.4 Speed Correction Factors

Speed correction factors in Mobile5a adjust motor vehicle emissions as a function
of average speed of a driving cycle. The FTP cy-cle, with an average speed of 19.6 miles

per hour, is used as the base estimate.

The emissions data used in EPA’s speed correction analysis were collected by the
EPA in their periodic LDGV emissions testing programs. The speed correction data files
contained emissions information on vehicles tested on eleven different driving cycles. A
speed versus time profile of each of the driving cycles is given in Appendix A. A selected
group of 371 LDGVs were tested over five driving cycles with average speeds between
seven and 48 miles per hour. EPA augmented the five driving cycles with three additional
low speed cycles with average speeds between 2.45 and 4.02 miles per hour. To obtain
more emissions data that represented city driving conditions, a different set of 302 vehicles
were tested across the eight driving cycles (EEA, 1991). In addition, data for the three
high speed cycles, which were intended to be more representative of freeway and interstate
driving, were obtained by EPA from CARB. The data set for the three high speed cycles
were obtained from tests carried out on a different population of vehicles compared to the
other eight driving cycles. All of the eleven driving cycles are in hot stabilized mode. A
vehicle is considered to be in the hot stabilized mode after the engine warm-up has
occurred, and after the engine and emission control systems have reached full operating
temperatures (Sierra, 1994). Table 7 describes the characteristics of the eleven driving

cycles used in MobileSa.

A total of 13 LDGYV technology groups were tested to develop the SCFs. These

groups are based upon model year, fuel metering system, and emissions control
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technology. Emission controls consist of a fuel control system and a catalyst type. Fuel
control systems are open loop (OL) and closed loop (CL). Open loop systems utilize

oxidation catalyst. Closed loop systems use either a three-way catalyst or three-way plus
oxidation catalyst. Three types of fuel metering systems are carbureted, port fuel injected

(PFI) and throttle body injec}ted (TBI) (EEA, 1991).

An EPA contractor, EEA, Inc., examined the driving cycle emissions data to
determine if there existed any vehicles within a particular group whose emissions were
such that they would bias the analysis of emissions as a function of speed. EEA reported
that the log (base 10) of the HC, CO and NO, emissions were essentially normally
distributed, although the distributions of CO at low speed were more uniformly distributed.
However EEA does not cite any criteria by which the shapes of the distributions were

evaluated (EEA, 1991).

EEA defined outlier vehicles as those vehicles whose logarithm of emissions at a
speed cycle were more than two standard deviations from the mean logarithm of emissions
of similar vehicles for the same speed cycle. These outliers represented vehicles with
extremely high or low emissions. Vehicles which were outliers at three or more speeds
were removed from the sample analyzed by EEA. No rational was cited for this approach,
which appears to be arbitrary. The driving cycle emissions, which are based on hot
stabilized operation modes, were then normalized to the Bag 2 emissions of the FTP, since
these emissions are also for hot stabilized mode. The data were then used to estimate the

parameters for an assumed SCF model:

e {gels) ) "

where
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A = Slope of the regression model used for speed correction (g/mi)
B = Technology specific constant (g/mi)
E = gram per mile emissions at 16.1 mph (Bag 2)

S = average cycle speed (mph)

This equation was used only for the low and medium speed cycles with speeds
between 2.5 to 48 mph. For the high speed cycles with average speeds between 50.9 mph

and 64.3 mph, Mobile5a uses a linear function.

The speed correction factor coefficients used as inputs to Mobile5a differ from
those reported by EEA. Documentation regarding the coefficients actually used by the
model is not available. The coefficients were weighted based upon the fraction of each
technology group comprising total sales in each year, and based upon normal versus high
emitters, to obtain model year specific coefficients which are used in the speed correction

equations in Mobile5a.

The next section describes the inputs and outputs required by Mobile5a to calculate

the emission factors.

4.5 Parameters of the MobileSa Model

The MobileSa model has the capability of using an interactive mode or a batch file
mode for accepting inputs from a user and generating emission factor outputs. In the batch
file mode, the user has to enter a batch file containing the input and output file names. The
input file contains the specific details for which the user wants emission factors. Mobile5a
writes the results to the user specified output file. The key user inputs to the MobileSa

model are:
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10.

11

12.

13.

Average speed(s)

Ambient temperature

Operating mode fractions: These fractions represent the percentage of time of a
driving cycle associated with cold starts, hot stabilized driving and hot starts.
VMT mix

Annual mileage accumulation rate and registration distributions by age

Basic exhaust emission rates: Although default values are included in the model
and are commonly used, Mobile5a allows the user to use an alternative set of
BERs.

I/M program(s): MobileSa has the capability of modeling the effects of /M
programs. The inputs for modeling I/M programs are described in section 4.5.7.
Air conditioning (A/C) usage, extra loading, trailer towing, and humidity
corrections

Tampering rate: User can input locally derived tampering rates.

Anti-tampering program (ATP): Mobile5a models programs which are intended to
assure that vehicle owners have not disabled or tampered with the emission control
system components.

Refueling emission: Refueling emissions occur when a fuel tank is filled. These
emissions result due to vapor space displacement and spillage. |

Local area parameters (LAP): A number of local conditions are required by
Mobile5a that describe the ambient conditions (e.g., temperature variations) and
fuel parameters (e.g., fuel volatility, oxygenate content etc.)

Trip length distribution: In Mobile5a the trip length refers to the duration of the trip

(how long a vehicle has traveled) and not to the distance traveled in the trip.

37



4.5.1 Average Speed

Average speeds are used to represent different trip-based driving cycles. Emission
factors may vary considerably with the average speed assumed. The Mobile5a input for
speed can have a significant effect on the resulting emission factors for exhaust and running
loss emissions. As an example, the sensitivity of the HC, CO and NO, emission rates as
function of average speed is shown in Figure 2. For HC and CO, the figure displays high
emissions at low speeds, with emissions decreasing sharply at first and then gradually as
average speed increases until minimum emissions are reached at about 48 mph. In
Mobile5a, the same emissions are assumed for all speeds from 48 to 55 mph for HC and
CO. For NO,, the emission rates are high at low speed. The emissions gradually decrease
as average speed increases until minimum emissions are reached at 19.6 mph. Beyond
19.6 mph, the NO, emission rate is predicted to increase with increases in average speed

(Sierra, 1994; SAI, 1994; Heirigs and Dulla, 1994).

In Mobile5a, average speed emissions analysis can be carried for all vehicle classes
at one average speed or for each individual vehicle class at different average speeds. The
user is requested to input the type of speed analysis (e.g., one speed for all vehicle classes -
or different speed for each vehicle class), the class of vehicles on which the analysis is to
be performed and the range of speeds for which the user wants to carry out the analysis

(USEPA, 1992).

4.5.2 Ambient Temperature

Changes in ambient temperature can have a significant effect on evaporative
emissions. The emissions from the fuel storage and delivery system are called evaporative

emissions. Evaporative emissions can be categorized as: hot soak; diurnal; running losses;
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resting losses; and refueling losses. When a hot engine is turned off, fuel exposed to the
engine (e.g., in fuel injectors) may evaporate and escape to the atmosphere. These are
called “hot soak” emissions. The escape of fuel vapors from the vent of a fuel tank due to
fluctuations in daily temperature are called as “diurnal” emissions. Running losses result
from vapor generated in the fuel tanks during engine operation. Resting losses are
emissions resulting from vapors permeating parts of the evaporative emission control
system (e.g., rubber vapor routing hoses), migrating out of the carbon canister, or

evaporating liquid fuel leaks.

The minimum and maximum daily temperatures are directly used in Mobile5a in
calculating the diurnal portion of evaporative HC emissions, and in estimating the
temperature of the dispensed fuel for use in calculation of refueling emissions. The
temperatures used in calculating the temperature corrections to exhaust HC, CO, and NO,
emissions, the hot-soak portion of the evaporative emissions, and resting and running loss
HC emissions are calculated on the basis of minimum and maximum temperature unless

overridden by the user. The input temperature value must be between 0° F and 100° F.

~ Diurnal emissions are most frequently measured for the FTP temperature range of
60°F to 84° F. The BERs for HC, CO and NO, are based on a standard temperature of
75 F. Mobile5a calculates an average temperature over the course of the day based on
input minimum and maximum daily temperature and adjusts the emission factors for

temperature accordingly.
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4.5.3 Operating Mode Fraction

EPA’s emission factors are based on testing over the FTP cycle, which is divided in
to three segments called the cold start (Bag 1), the stabilized part (Bag 2) and the hot start
(Bag 3). Each of these bag; represent an operating modes. Emissions are typically highest
for Bag 1. During cold starts, the vehicle, the engine and the emission control equipment
are all at ambient temperature. The catalytic emissions control system does not provide full
control until it reaches a “light-off” temperature of several hundred degrees Fahrenheit. In
addition, the exhaust gas composition must be maintained within a narrow range of
acceptable oxygen cpncentration in order for the catalyst to operate effectively. During
engine warm-up a richer fuel-air mixture must be provided to the cylinders to achieve
satisfactory engine performance. Thus the exhaust gas composition is outside the range for
catalyst operation and uncontrolied emissions of CO and HC are high. Emissions are
somewhat lower in the hot start mode. Emissions are typically lowest for the stabilized
mode, when the vehicle has been in operation long enough for all the systems to have
attained relatively stable, fully warmed up operating temperatures as long as the vehicle
operates within a narrow range of fuel-to-air ratio for proper catalyst function (Sierra,

1994; SAI 1994).

4.5.4 VMT mix

The VMT mix specifies the fraction of the total highway VMT that is accumulated
by each of the eight vehicle classes. This parameter is used in Mobile5a only to calculate
the composite fleetwide emission factor for a given scenario on the basis of the eight

vehicle class-specific emission factors.
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As a default, Mobile5a calculates the VMT mix based upon national data
characterizing registration distributions and annual mileage accumulation rates by age for
each vehicle type, diesel sales fractions by model year (for LDVs and LDTs only), total
HDDV registrations and annual mileage accumulations by weight class, the fraction of
travel of each vehicle type that is typical of urban areas, and total vehicle counts by vehicle
type. Thus VMT mix calculation is highly dependent on annual mileage accumulation rates

and registration distributions by age (Sierra, 1994; SAI, 1994).

4.5.5 Annual Mileage Accumulation Rate and Registration
Distributions by Age

Mobile5a’s emission factor calculations use travel fractions for vehicles of specified
ages and types. The travel fractions are the percentages of total miles traveled by a vehicle
type in each model year. Thus in Mobile5a, the sum of travel fractions for each vehicle
type over 25 model years is unity. The travel fractions are based upon estimates of average
annual mileage accumulation by age (1 - 25 years of operation). The model also uses
registration distributions by age (1 - 25 years) for each vehicle type, except motorcycles,
for which annual mileage accumulation rates and registration distributions are for the first
12 years of operation. Registration distributions include the percentage of a vehicle type
registered in each model year. Like travel fractions, the sum of registration distributions

for a vehicle type over 25 model years is unity.

For all eight classes of vehicles, Mobile5a uses national average values for the
annual mileage accumulation rate and registration distributions, if the user does not provide
any alternative mileage accumulation rate and/or registration distributions. The annual

mileage rates are based on analyses of information developed over a long period of time
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and the registration distributions are based on analysis of calendar year 1990 registration

data (Sierra, 1994; Heirigs and Dulla, 1994).

To calculate the effect of the annual mileage accumulation or the registration
distributions, the user is expected to enter the age of the vehicle (between 1 and 25 years)

and the average range of mileage accumulation (USEPA, 1992).

4.5.6 Basic Exhaust Emission Rates

Default BERs are contained in Mobile5a as described in Section 4.2. However, it

is possible for the user to override these values. Specifically, the BERs can be modified by

model year in the input file by using the appropriate input file flag number (e.g., if the user
desires to use the Mobile5Sa BERSs, the flag value for this parameter can be set'to I).
Typically no changes to these equations are warranted for use in developing emission
factors or inventories for SIP purposes. However, if the user wants to use alternative

BERs, then the information that needs to be supplied includes: the number of alternate

BER equations that are to be entered, the region (low or high altitude) to which these BERs

apply, the vehicle types affected, the first and last model years to which the alternate
equations apply, and the ZML (g/mi.) and the deterioration rates (g/mi. per 10k mi.)

(Sierra, 1994; Heirigs and Dulla, 1994; USEPA, 1992).

4.5.7 Inspection/Maintenance Program(s)

This I/M flag allows the option of having Mobile5a include the emissions benefits
of operating the I/M programs on the emission factors. The user has the option of
assuming that no I/M program is in effect for any year, or of modeling the effect of one or

two I/M programs. To model an I/M program the information required is: calendar year
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that the I/M program starts, stringency level, first and last model years of vehicles subject
to the I/M program, waiver rates, compliance rate, program type, frequency of inspection,
test type, and cutpoints for Hc; CO and NO, if defaults are not used (USEPA, 1992).

4.5.8 Air Conditioning (A/C) Usage Extra Loading, Trailer Towing,
and Humidity Corrections

Mobile5a can adjust exhaust emission factors to account for air conditioning usage,
extra loading, trailer towing, and humidity. These corrections apply only to light-duty
gasoline-fueled vehicle types with the exception that the humidity correction affects only

NO, emission factors and is also applied to motor cycle emissions (USEPA, 1992).

4.5.9 Tampering Rates

Tampering refers to any disabling of the emission control systems of motor
vehicles, whether willful or not, not caused by defect or normal wear. A tampering rate is

the portion of the vehicle fleet subject to such tampering.

Eight types of tampering modeled by Mobile5a include: air pump disablement;
catalyst removal; fuel inlet restrictor disablement; overall misfueling; Exhaust Gas
Recirculation (EGR) system disablement; evaporative control system disablement; Positive

Crankcase Ventilation (PCV) system disablement; and missing gas caps.

To quantify the effect of tampering on emissions, “emission impact rates” are used
in the model. The BERs for the different technology group of vehicles in Mobile5a are
combined with the corresponding fraction of vehicles equipped with the given control

technology and the emissions impact rates to obtain the tampering “offsets”. These offsets
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are later added to the non-tampered emission factors (USEPA, 1992; SAI, 1994; Sierra,
1994),

4.5.10 Anti-Tampering Program (ATP)

The ATP parameter allows the user to include the benefits of an anti-tampering
program in the emission factor calculations. The user specifies an ATP, its start year, the
earliest and most recent model years of vehicles subject to the program, frequency of
inspection (annual or biennial), compliance rate and the inspections performed (air system,

catalyst, fuel inlet restrictor, tailpipe lead deposit test, EGR system, evaporative system,

PCV, gas cap) (USEPA, 1992).

4.5.1 1 Refueling Emission

This parameter controls how Mobile5a represents refueling emissions from gasoline
fueled vehicles. Refueling results in the displacement of fuel vapor from the fuel tank to
the atmosphere. There are two basic approaches to the control of vehicle refueling
emissions, generally referred to as the “Stage II” (at the pump) and “on board” (on the
vehicle) vapor recovery system (VRS). Mobile5a has the ability to model uncontrolled
levels of refueling emissions as well as the impacts of the implementation of either or both

of the major types of VRS.

To model the effect of a Stage II VRS, the user must provide four inputs: the start
year (calendar year in which the requirement takes effect), number of years for the Stage II
VRS installation to be completed and the system efficiency at controlling refueling
emissions. For modeling on-board effects, the user needs to provide only the starting

model year and the type of vehicle subject to the requirement (Sierra, 1994; SAI, 1994).
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4.5.12 Local Area Parameters

This record contains seven to ten fields: scenario name, ASTM fuel volatility class,
minimum and maximum daily temperatures, period | RVP, period 2 RVP, period 2 RVP
start year and optional values to indicate if the user is inputting data on oxygenated fuel
program, alternate diesel sale fractions by model year and the use of reformulated gasoline

(USEPA, 1992).

4.5.13 Trip Length Distribution

For any given set of conditions, running loss emissions increase significantly as the

duration of the trip is extended and the fuel tank and the engine become heated.

Temperature and fuel volatility is used by MobileSa for each combination of vehicle
type and trip length category for calculating the running loss emissions at the standard test
speed. This information if supplied by the user is used in weighting these factors together
to derive the average emission factor which is then corrected for average speed (USEPA,

1992).

The next chapter describes other measurement techniques and approaches that have

been used to estimate on-road mobile source emissions.
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Table 6. Vehicle Classes Modeled By the MobileSa Emission Factor

Model. Source (Heirigs and Dulla, 1994)

[ Symbol DESCRIPTION
T LDGV Light--Duty Gasoline Vehicles
LDGT1 | Light-Duty Gasoline Trucks under 6000 pounds. gross vehicle weight
LDGT2 | Light-Duty Gasoline Trucks from 6,000 to 8,500 pounds. gross vehicle weight
HDGV | Heavy - Duty Gasoline Vehicles
LDDV [ Light-Duty Diesel Vehicles
LDDT Light-Duty Diesel Trucks
HDDV | Heavy - Duty Diesel Vehicles
MC Motorcycles
Table 7. Driving Cycle Characteristics.
Source (EEA, 1991; Guensler; 1993)
Cycle ASverage Duration | Distance Percent of Time By Mode
ee
I’Il’)lph sec mi. Idle | Acceleration [ Cruise |Deceleration
LSP1 2.45 617 0.42 45.9 16.2 23.2 15.2
LSP2 3.63 638 0.64 36.4 23.4 17.7 22.6
LSP3 4.02 625 0.70 34.1 24.2 19.2 22.6
NYCC 7.10 599 1.18 31.9 239 21.4 22.7
SCCI12 12.10 349 1.17 25.5 26.1 27.8 2.6
FTPBag2| 16.10 867 3.89 17.4 27.2 36.9 18.5
FTP Bag 3| 25.52 505 3.59 19.0 22.7 39.1 19.2
SCC-36 35.85 966 9.90 6.3 18.9 61.6 13.2
HFET 48.40 766 10.20 1.2 14.2 75.5 9.1
HSP1 50.90 480 6.80
HSP2 57.6 486 7.80
HSP3 64.3 492 8.80
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Different Driving Cycles
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5.0 APPROACHES TO ESTIMATING MOBILE SOURCE EMISSIONS

The EPA uses Mobile5a to develop area-wide estimates of highway mobile source

emissions. Unfortunately few attempts have been made to validate the model.

A number of techniques exist for measuring emissions of on-road vehicles.
Comparisons of measured versus modeled emissions provide some insight into possible
sources of systematic and random error that are not accounted for in Mobile5a. In the case
of mobile source emissions, it is difficult to obtain a meaningful datum for actual on-road
enﬁssioné, due to the substantial variability in emissions across a population of vehicles
and the limitations of measurement techniques. These limitations typically include small
sample size, lack of representativeness, or inability to directly measure the quantity that is
of interest. For example, remote sensing provides measurements of pollutant
concentrations rather than mass emission rates. The latter is more useful for emission
inventory development. However, inspite of the limitations, the various types of on-road
measurements are the best data available for comparison to emission factor estimates (Frey

et al., 1996; Guensler, 1994; Gertler and Pierson, 1991).

Examples of measurement techniques and approaches include: (1) tunnel studies;
(2) remote sensing; and (3) on-board instrumentation. Instrumented vehicles have also
been used to better characterize driving cycles. In this section we briefly review work in

these areas.

5.1 Tunnel Studies

Emissions of on-road vehicles have been measured in studies at the Fort McHenry,

Tuscarora and Van Nuys tunnels. In the tunnel studies, mass emissions exiting the mouth
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of the tunnel, after accounting for winds and total air flow, were measured. By counting
the number and types of vehicles that passed through the tunnel during each sampling
period, gram per mile emissions of HC, CO and NO, were derived (Ingals, 1989). The
Mobile5a model was applied to attempt to predict emissions in the tunnel and the model
estimate was compared to the tunnel study measurements. Mobile5a overpredicted mobile
source HC and CO emissions observed at the Tuscarora and Fort McHenry tunnels by a
factor of two. In contrast to this, Mobile5a underpredicted HC and CO emissions
observed during the 1987 Van Nuys tunnel experiment by factors of two or more. There
was no significant difference in the predicted and measured NO, emissions (Gertler et al.,

1995).

Possible explanations for differences between the measured and the modeled
emissions may include: (1) differences in the tunnel versus the modeled fleet; and (2)

differences in speed variability in some tunnels.

The Desert Research Institute (DRI) has reported Substantial variability in speed in
the Van Nuys tunnel experiment. In contrast, comparatively little variability in speed was
reported for the Fort McHenry and Tuscarora tunnel studies (Ingals, 1989; Lawson, 1990
and Pierson et al., 1995). In the Van Nuys tunnel, the variability in speed may be higher
than for the driving cycles associated with the same average speed in Mobile5Sa. Similarly,
MobileSa does not have the capability to model steqdy speeds typical of the Tuscarora
tunnel. Furthemore, Mobile5a is not intended to be used for link based emission estimates,
since it is based upon complete driving cycles. Therefore, Mobile5a model results cannot
be directly compared to the observations from the tunnel studies. The driving cycles
embedded in Mobile5a are not repbresentative of the speed variations observed in these

tunnel studies.
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5.2 Remote Sensing

Remote sensing technology provides a means to measure ratios of CO to CO, and
HC to CO,. From these ratios, the concentrations of CO and HC in the exhaust plume of
on-road vehicles can be inferred by making assumptions regarding fuel composition and
the air-to-fuel ratio. NO, emissions are not included in the present remote sensing studies
because a reliable NO, measuring instrument is not yet available. Remote sensing studies
have shown considerable variability in the emissions of the in-use vehicles (Bishop, 1994).
For example, the concentration of CO typically varies by three orders-of-magnitude on a
percent volume basis, while HC concentrations typically vary by two orders-of-magnitude.
Dual remote sensing measurements conducted by CARB have shown that in-use vehicles
have considerable variability on repeat measurements for percent CO. Comparison of CO
emissions data from the two remote sensors showed high variability as evidenced by a
coefficient of determination (R?) value of 6.52 (Cadle, Gorse, Carlock et al., 1994). Thus,
emissions may change significantly on a second-by-second basis. However it must be
noted that remote sensing emission measurements are inherently more variable than those
from traditional dynamometer tests. This is because remote sensors measure instantaneous
emissions, whereas dynamometer tests are used to measure the emissions over a specified
driving cycle. Remote sensing measurements are also sensitive to driving modes (e.g.,

cruise, acceleration).

5.3 On-Board Instrumentation

In order to evaluate the emissions under real-world driving conditions, vehicles
with bn—board instrurmentation have been used to measure the emissions of HC and CO
(Pablo and Long, 1995, Kelly and Groblicki, 1993). At CARB, calibration of the on-

board instrumentation was performed by parallel sampling on a dynamometer. The
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calibration phase consisted of different driving cycles. The on-board collected data
generally had higher emission rates as compared to the dynamometer data because of the
effect of road grades. These effects are further exacerbated when air conditioning is

operating or a fully occupied vehicle is used (Pablo and Long, 1995).

In addition to providing insights in to the possible systematic errors in the emission
factors, on-board instrumentation studies carried out by CARB have indicated that there is
substantial variability in the CO and HC emissions. These emissions varied by a factor of
about four depending on the speeds and routes on which an instrumented vehicle was
driven (Kelly and Groblicki, 1993). This implies that emissions are sensitive to the

difference in the driving cycles.

5.4 Representative Driving Cycle

To enhance the representation of contemporary driving patterns in the South Coast
Air Basin (SCAB), a driving cycle called the Unified cycle was developed 4by Sierra
Research (Austin et al, 1993). This cycle was developed by using an instrumented “chase
car” in the SCAB to characterize typical driving patterns. The Unified cycle has an average
speed of 24.6 mph with peak velocity of 67.2 mph and maximum acceleration of 6.9
mph/s. However there are many high speed and acceleration events which are not

represented by even the Unified Cycle (Gammeriello and Long, 1993).

The CARB tested 56 vehicles from the 1983-1992 model years, on both the Unified
and FTP driving cycles. According to CARB, the predicted HC, CO and NO, emissions
were higher by 27 percent, 68 percent, and 17 percent respectively, for the Unified cycle
(Gammeriello and Long, 1993). If the Unified cycle better represents typical driving

patterns than the FTP, this would imply a systematic underestimation of emissions by the
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Mobile5Sa model. However, no individual driving cycle can be representative of all vehicle

trips.

5.5 Implications of the On-Road measurements for Emission Factors

The results of the tunnel studies, remote sensing and on-board instrumentation

studies indicate that no single cycle can address the shortcomings of the emission factor

model estimates. There is substantial variability in emissions for any population of vehicles

even if they are operated under similar conditions. Variations in actual driving cycles lead
to additional variability in emissions. Failure to account for these and other sources of
variability can lead to systematic and random errors in estimating emission factors.
Emission factor models are typically intended to estimate “average” emission factors with
respect to vehicle population. The application of “average” emission factors to a specific
vehicle activity does not represent the diversity of the vehicle activity (Guensler, Sperling

and Jovanis, 1991).

EPA’s Mobile5Sa model is based on a deterministic approach, utilizing average or
point estimates as inputs. Many of these input parameters are more appropriately
represented as distributions. The emissions data which underlies the MobileSa model has
substantial variability even for similar vehicles tested on the FTP. Also, uncertainty exists
because the FTP and other standard driving cycles used in the formulation of the Mobile5a

model may not be representative of the on-road driving behavior.

The degree of variability and uncertainty in the emissions estimates can be better
explained using a probabilistic version of Mobile5a. The probabilistic analysis would help
quantify the uncertainty and variability associated with the emission factor estimates

calculated by Mobile5a. Chapters 7 describes a probabilistic version of Mobile5a. A new

52



methodology for probabilistic analysis of emission data from different driving cycles is
described. A demonstrative case study describing the application of the new methodology

to the SCF data underlying is also included.
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6.0 THE NATURE AND SOURCES OF UNCERTAINTY AND
VARIABILITY |

Emissions of ozone precursors from mobile sources are estimated from emission
factors and activity data. Emission factors for mobile sources are developed based on
limited sampling of emission sources within a given category under certain operating
conditions. The variability and uncertainty in the measurements used to develop emission
factors are not fully quantified. There is a tendency to place too much confidence in

estimates which may be highly uncertain.

In this chapter the basic concepts of uncertainty and variability and their
implications in mobile source emission predictions are discussed. Sources of uncertainty
which are described here include measurement errors for model inputs and the
approximation errors in a model itself. For mobile sources, the uncertainty in fleet average
due to inter-vehicle variability and the differences in operating conditions of vehicles in lab
tests versus thé real world applications is discussed. Sources of variability described
include vehicle activity and the emission factors. A description of various types of
probébility distributions that can be used to characterize uncertainty and variability is also

included.

6.1 Uncertainty

In this section, sources of uncertainty related to measurement errors for model

inputs and for the models themselves are reviewed.
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6.1.1 Measurement Error

Uncertainty results due to lack of complete and accurate information regarding the
true value of a quantity. Uncertainty is introduced because of measurement errors and

because of simplifications introduced while analyzing information.

Uncertainty can be characterized in terms of accuracy and precision for measured
quantities. The accuracy of an estimate is related to bias. Any sampling procedure that
produces inferences that consistently underestimate or consistently overestimate some
characteristic of the population (e.g., emissions of CO, NO,, HC from mobile sources) is
said to be biased. Accuracy implies a lack of bias. Lack of accuracy is denoted by the
difference between the actual value of a quantity and the average estimated value

(Gschwandtner, 1993).

6.1.1.1 Systematic Error

Systematic errors arise from biases in the measuring apparatus and the experimental
procedures. They may be due to imprecise calibration, faulty reading of the scale and
inaccuracies in assumptions used to infer the actual quantity from the observed data.
Careful design and calibration of measurement apparatus and procedure and careful
analysis of the assumptions will help to reduce this error. However, there will be an
irreducible residual systematic error. Even if all known sources of bias are adjusted, the
sources of error which are unknown or merely suspected are difficult to estimate and

require a large element of subjective judgment (Morgan and Henrion, 1990).
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As an example to illustrate how bias in a model may be identified, Table 8 shows a
comparison of the highest 25 predicted and observed 1-hour concentrations of CO (ppm) at
an intersection in suburban Chicago, Illinois. The average observed value was 35 ppm
while the average concentration predicted by the emission model (CAL3QHC) was 24
ppm. Thus the systematic error in the estimate was 11 ppm, or 46 percent higher than the

true value.

Table 8. Predicted and Observed hourly concentrations of CO at an
Intersection in Chicago, Illinois.

(Source - Schewe, 1991)

Observed | Predicted Observed Predicted Observed| Predicted
PPM PPM PPM PPM PPM PPM
43.7 38.0 41.2 35.5 38.5 34.3
38.0 29.6 37.5 26.7 37.2 24.0
36.0 24.0 35.5 23.1 35.3 22.9
35.0 22.8 35.0 22.6 34.0 22.6
34.0 22.1 33.3 21.5 33.3 21.3
33.3 21.3 33.0 20.5 33.0 19.8
32.0 19.4 31.7 19.3 31.5 19.1
6.1.1.2 Random Error

Precision is the proximity of the estimated value to that of the model or target value.
Precision implies a lack of dispersion of measured values. Precision is defined as the
inverse of the standard deviation of a set of measurements. Thus measurements with a
large random error are imprecise. Highly precise values can be inaccurate and vice versa.
Uncertainty can be viewed as a combination of precision and estimated accuracy

(Gschwandtner, 1993).

The distinction between precision and accuracy is important for understanding the

errors associated with any set of measurements or estimates. Ideally estimates should be
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both accurate and precise. However it is very difficult to obtain the “true value” of any
phenomenon. For example, in case of mobile sources, it is very difficult to obtain data on

on-road emissions to compare to lab data.

Measurement
Distribution 1

Measurement
Distribution 2

Probability Density

M,

Value of Quantity Being Measured

Figure 3. Hypothetical Distribution of Measurements Illustrating Precision
and Accuracy

W, = mean of distribution 1
U, = actual value
U, = mean of distribution 2

Figure 3 is a schematic depicting different combinations of accuracy and precision.
In one case, measurement distribution 1, an inaccurate but precise measurement is obtained
In the second case, measurement distribution 2 an accurate but imprecise measurement is

obtained.

The uncertainty in emission estimates due to errors in measurement of input

parameters depends upon the range of variations between the observations and the number
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of observations taken. Uncertainty can be quantified in many ways. One of the most

useful ways is to use probability distributions (Morgan and Henrion, 1990).

6.1.1.3 Probability Distributions
Probability distributions can be expressed in terms of probability density functions
(PDFs) and cumulative distribution function (CDFs) or both. The PDF is a graphical

means of representing the relative likelihood or frequency with which values of a variable

may be obtained. The PDF also illustrates whether a probability distribution is skewed or

symmetric. In a symmetric unimodal distribution the mean, median and the mode coincide.

In a positively skewed distribution (e.g., Lognormal), the mean is greater than the mode.
An alternate way to represent a probability distribution is the CDF. The CDF shows
probability fractiles on the y-axis and the value of the distribution associated with each
fractile on the x- axis (Morgan and Henrion, 1990; Frey, 1992). The CDF is and the
integral of PDF.

F(x)= _ J.f(x) dx 5

where:
F(x) = Cumulative Distribution Function

f(x) = Probability Density Function

also P(X £x) =F(x)

Figure 4 show the PDFs and CDFs of some of the probability distributions that will be

used in the analyses done for the purpose of this report.
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6.1.2 Approximations (Model Uncertainty)

In addition to uncerEainties due to the limitations of measurements, uncertainty is
also introduced by the model itself. The structure of mathematical models employed to
represent the real world scenarios may be a key source of uncertainty. Models are only
representative portrayals of real world systems. Significant approximations are an inherent
part of the assumptions upon which models are built. Different sources of model

uncertainties, as listed by Frey (1992), are given below.

6.1.2.1 Model structure

Model “structure” is composed of algorithms based upon a specific set of
assumptions regarding relationships among model inputs in determining the model output.
Alternative scientific or technical assumptions for the development of the model can aiter
the model structure. A model with an altered structure would make different predictions for
the same set of input values. The implications of these alternative foundations can be
evaluated by comparing the results from each alternative model. A difference in the results
may call upon the subjective judgment of the analyst to choose the most plausible option for
the given problem. For example, in the Mobile5a model, the BERs have been calculated
using a linear model where the independent input variable is “mileage accumulation”.

Thus, the BER is dependent on the miles accumulated by a vehicle. The parameters of the
BER were estimated as using a linear least squares regression. However, since emissions
vary bver orders-of- magnitude, a log-linear model is an alternative structure for the BER

model. The implications of using a log-linear model are discussed in Chapter 8, where the

MobileSa emission factors are analyzed as a function of BERs and SCFs.
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6.1.2.2 Model Detail

Models are often simplified for tractability by making some simplifying
assumptions. Simplified models are also developed due to lack of confidence or knowledge
about the actual structure of the model. In Mobile5a, there are significant simplifying
assumptions. For example, the SCFs do not explicitly account for modal operations such

as acceleration and deceleration (Guensler et al., 1993; Guensler and Geraghty, 1991).

6.1.2.3 Validation

Validation is a process by which model predictions of a quantity are verified by
comparison to observed values of the same quantity. Precision and accuracy of model
predictions can be quantified by comparing model predictions to actual values of the same
quantity. In case of Mobile5a, the validation process should involve a detailed re-analysis
of the data used to develop the model algorithms along with confidence interval analysis.
This can help practitioners identify the model components contributing to the greatest

uncertainty to emission estimates (Guensler, 1993).

6.1.2.4 Extrapolation

Extrapolation is a key source of uncertainty. Models which are validated for one
portion of the parameter space may be completely inappropriate for making predictions in
other regions of the space. The SCFs in the Mobile model extrapolate between average
speeds of standard driving cycles described in Chapter 4. However, the differences
between the driving cycles can not be solely explained by average speed. Thus itis a

misuse of data to “interpolate” between driving cycles (Frey et al., 1996).

6.1.2.5 Scenario Reasonableness

Before using a model a scenario for the problem of interest must be developed. A
scenario is a set of assumptions about the nature of the problem to be analyzed. Scenarios

can be constructed to represent an actual environmental problem or they may be constructed
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based on policy motivations. For example, in case of mobile source emission models, a
scenario would involve specifications of the following: average speed, vehicle mix, /M
programs, and other factors. The Mobile5a model is used to make predictions for specified
scenarios. However, if the scenario is improperly specified (e.g., a link based average
speed instead of a trip based average speed) then the model may be misapplied, in turn
leading to meaningless predictions. Furthermore, even if a qualitatively correct scenario is
constructed, if errors are made in specifying the values for the model inputs, then the model

predictions would be in error compared to the actual “real-world” scenario.

6.1.2.6 Dependence

It is essential to consider the dependence between the input variables in a model.
However, in simplified models, dependence between input variables is often ignored for
convenience or because of lack of sufficient information to develop a more detailed model.

Failure to account for dependence can lead to uncertainty in the model predictions.

Whenever possible, it is better to explicitly model the dependence between two
variables using a functional relationship based upon statistical specification of covariance.
Modeling dependence explicitly involves the development of a more detailed model which
captures the sources of dependence between two quantities. For example, in the Mobile5a
model, the correction factors (viz., SCF, TCF etc.) are assumed to be independent of each.
If the temperature testing had been undertaken on the test cycles used to develop the SCFs,
then the relafionship between the relative emissions, average speed and temperature would

have been more certain, than the independent use of existing SCFs and TCFs.
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6.2 Sources of Uncertainty in Mobile Source Emission Estimates

Uncertainties in emissién estimates for vehicles can arise from errors in estimates of
VMT, emission factor model inputs and the emission factor model itself. The driving cycle
data which underlies the emission models (e.g., Mobile5a), may not be representative of
real world driving conditions. Furthermore, neither variability in measurements for a given
type of vehicle nor the uncertainty in estimation of the fleet average emission factors is
quantified. Thus the level of variability associated with model predictions and their use in

developing emission inventories is unknown.

Another source of uncertainty is the database used to estabiish the algorithms in the

‘emission factor models. The algorithms may have been developed using incorrect

assumptions or misapplied statistical techniques. The database may not be representative of
the on-road fleet. For example, the data which underlie the SCF in Mobile5a were based
upon voluntary testing of vehicles. Therefore, there may be an under-representation of the

high emitting vehicles.
The Mobile5a model uses a point estimate approach. Thus, information regarding

variability is not captured. Therefore, the model estimation gives a misleading sense of

precision.

6.3 Variability

Variability implies heterogeneity in observations. It can be a heterogeneity within a
population or a subset of the population under consideration. Thus variability indicates the

range of distribution for a population.
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Variability can characterized using a frequency distfibution. The frequency
distribution for a subset of the population under consideration reflects the true differences
between the individual members. Knowledge of the frequency distribution helps to assess
whether a population needs to be subdivided in to groups which are more nearly
homogeneous.

Although the terms uncertainty and variability are sometimes used interchangeably,
they are distinct. Uncertainty generally is considered to arise from errors of omission,
specification, measurement, or extrapolation. Variability refers to spatial and temporal
differences between individuals in a population or larger group. Frequency distributions
for variability can be used to identify significant subpopulations which merit more focused
studies. But uncertainty in the characteristics of specific members of the population results
in uncertainty in the frequency distributions (Frey, 1992). Therefore, it is important to
qualify and quantify the uncertainty and variability associated with specific inputs which

contribute most significantly to uncertainty in final decision variables.

In case of mobile sources, emissions vary between individual vehicles when
operated under the same conditions and for a given vehicle when operated over a range of
conditions. Sources of variability in mobile source emissions are: activity data and

emission factors.

6.3.1 Activity Data

Vehicle activity is conventionally defined in units of average daily VMT, which is
the product of average daily traffic volume and roadway length. VMT can be calculated for

each link or for an entire area, distributed over each functional road class. Therefore, VMT
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is distributed over a characteristic vehicle type mix and assigned a characteristic speed

according to the road class (Keating ez al., 1995).

Thus the activity data for mobile source emission is spatially disaggregated and
temporally variable. In other words many quantities associated with mobile emissions such
as vehicle class and age, vehicle type, VMT, vehicle speed etc., are variable over time and
space. For example, vehicles operate under varying speed, accelerations and operating
modes (i.e., cold or hot starting and hot stabilized vehicle operations). Each of these can

be described by frequency distributions.

6.3.2 Emission Factors

Emission factors are generated by using emission factor models such as Mobile5a.
There is a significant variation in emission factors inherent within a class of vehicles due to
equipment configurations, and location-specitic factors such as temperature, speed, and
fuel characteristics. For example, fuel volatility and composition, which affect both
evaporative and tailpipe emissions, may vary seasonally and with location. The in-use fleet
of vehicles is composed of several generations of vehicles and several control technology
groups. The vehicle design, such as the type of emission control equipment and other
engine components, affect emission levels. Emission factors are also affected by vehicle
maintenance or reflected by deterioration in emissions control with increasing age and
mileage accumulation. Also location specific characteristics such as temperature and
vehicle speed have a profound effect on the emission factors. For a summer day, with
temperature variations between 65 °F to 85 °F, the highway vehicle emission factors vary
by a factor of 2 (Battye, 1993). From Figure 2 (Chapter 4) it can be seen that estimated

emission factors can vary substantially with change in average speed of vehicles.
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The deterministic emission factor models such as Mobile5a are intended to estimate
“average” highway emission factors. However it is unlikely that the point estimates
provided by the model correspond to an average in a rigorous statistical sense. This is
because the model does not account for variability in emissions even for a given set of
operating conditions of the in-use fleet. The models attempt to develop averages that
account for a mix of technology groups, deterioration, maintenance and other factors. The
variability and uncertainties in the mobile source emissions can be propagated through the
model by representing the model inputs as frequency distributions. The next section
describes simulation techniques that can be used to propagate inputs as distributions

through a model.

6.4 Monte Carlo and Latin Hypercube Sampling (LHS)

The most classic sampling technique used for numerical simulation is Monte Carlo
sampling. To illustrate how Monte Carlo methods work, consider the following conceptual
approach. First, a probability distribution is specified for each model input. Each
distribution can be represented as a CDF. The CDF can be inverted so that the value of a
random variable is represented as a function of uniformly distributed cumulative
probability. A random number generator then generates n random numbers from a
uniform distribution on the interval [0,1], where #n is the sample size. These random values
are then transformed into the input variable, X, using the inverse CDF of X. In a general
case of a model with m input variables, the n sample values from an input distribution, X,
are paired randomly with n values of a second input distribution. This process can be
repeated for m number of variables to create “m-tuples” representing one random draw
from each of the m variables. One m-tuple defines a scenario, which is propagated through

a model to obtain one output value. This process is repeated n times so that n scenarios are

66



propagated through the model resulting in a distribution of » output values (Morgan and

Henrion, 1990).

One advantage of using Monte Carlo sampling is that with a sufficient sample size,
it provides an excellent approximation of the output distribution. Also, since it is a random
sampling technique, the resulting distribution of values can be analyzed using standard

statistical methods (Morgan and Henrion, 1990).

The primary disadvantage of Monte Carlo technique is that even a minimum
necessary sample size is often undesirable large. This is because a large sample size may
be necessary in order for a sufficient number of samples to be taken from low probability
events. As an alternative to random sampling, a stratified sampling technique can ensure
that samples are taken from the entire range of distribution. Latin Hypercube Sampling
(LHS) is one such sampling technique. In LHS, the range of each input distribution is
divided into n intervals of equal marginal probability. One'value of the random variable is
selected from each interval. The sample taken from each interval may be selected at random
from within the interval, or from the median of the interval. The former is referred toasa
random LHS while the later is called median LHS. In both median and random LHS, the n
values from each distribution are grouped into n-m tuples by the same method described for
Monte Carlo sampling. The stratification of the input distributions into n equal probability
intervals ensures that the sample size compared to random Monte Carlo sampling.
However, since LHS is not a purely random sampling technique, the results may not be

subject to analysis by standard statistics (Mckay et al., 1979).

Deterministic mobile source emission factor models fail to quantify the variability

and uncertainty for a given set of model input assumptions. Although, it is assumed that

the emission factors generated by Mobile5a represent average values, there are sources of
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systematic error that lead to bias in the ability of the model to accurately reflect data (e.g.,
driving cycle emission data) that underlie the model. To account for all these short-
comings of the deterministic mbdel, a probabilistic version of MobileSa was developed.
This model makes use of simulation techniques described above to allow the user to
represent inputs as probability distribution. Chapter 7 describes the probabilistic model in
detail. A new methodology for analyzing driving cycle data in a probabilistic environment

is discussed.
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7.0 PROBABILISTIC MODELING OF MOBILE EMISSIONS USING A
MIXTURE DISTRIBUTION

This chapter discusses the development of a probabilistic version of the Mobile5a
model and describes a number of general capabilities of this new model. A detailed
analysis of the driving cycle emissions that underlie the speed correction factors for LDGV
in Mobile5a is discussed. A new methodology is presented by which data from multiple
trip-based driving cycles can be combined to represent any arbitrary frequency distribution
of vehicle speed. This method can be applied to the standard driving cycles used in the
vehicle testing programs by the EPA, to better simulate on-road driving patterns and
represent observed variations in si)eed. The method is based upon quantification of
variability in key inputs to the emission factor model and the application of a probabilistic
model to estimate frequency distributions for emissions. The frequency distributions for
emissions are cbmpared to the emissions estimates that would be made in absence of the
probabilistic approach. By making use of: (1) existing data from several standard driving
cycles; (2) a probabilistic representation of variability in emissions over a fleet of vehicles;
and (3) the cdpabilities of a new area wide vehicle detection technology, the emission
estimates predicted by the emission models can be improved. In the next chapter, the
development of probabilistic estimates for each driving cycle will be considered in more |

detail.

7.1 Probabilistic Version of Mobile5a

The original Mobile5Sa model requires point estimates for each model input and
calculates a point value for HC, CO and NO, emission factors. The original code was
implemented primarily for the purpose of single runs in a batch mode, and was not readily

suitable for repeated runs in an iterative mode, as would be required in sensitivity and
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uncertainty analyses. To address these and other short comings, an interactive probabilistic
version of the MobileSa model was developed and implemented as a callable subroutine.
This work was done at the North Carolina State University primarily by Sing-Yih Fu under
the supervision of Dr Ranji Ranjithan. This allows for repeated execution of the emission
factor estimation model thr(;ugh function calls. Figure 5 illiterates the modifications made to

the deterministic version of Mobile5a.

Probabilistic

User Analysis
Interface ] \ Mobile5a } Output

/ Results
\ Sensitivity

Analysis

Figure 5. Probabilistic Version of MobileSa.

The interactive probabilistic version of Mobile5a includes a sensitivity analysis
capability. This procedure allows the users to select an input from a list, specify a range
and interval for the input, and specify a set of output emission factors. This model is then
executed repeatedly to evaluate the sensitivity of the emission factors with respect to the
selected model inputs. Several procedures were also implemented to allow for uncertainty
analysis. These include random Monte Carlo simulation and Latin Hypercube sampling
(LHS) (Iman et al., 1984). Both of these methods were reviewed in Section 6.4. These
sampling procedures allow the users to specify a set of model inputs to be treated as
stochastic variables, to select a probability distribution for each selected input, and to
specify the parameters (e.g., mean, variance, upper or lower bound) for each distribution.
Currently the following distributions are supported: normal, lognormal, uniform,

loguniform, triangular, beta and a user-defined frequency distribution.
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In order to identify the most significant input assumptions in a probabilistic
analysis, a post processor framework is employed to compute partial correlation
coefficients (PCC) and the standardized regression coefficients (SRC) (Iman et al., 1985).
Using PCC and SRC, the user can analyze and quantify the sensitivity between the
stochastic input parameters and specified MobileSa output variables. This software also

has the capability to calculate these coefficients based on ranks, rather than sample values.

7.2 Probabilistic Analysis of Driving Cycle Emissions

The Mobile5Sa model accepts any average speed between 2.5 and 65 mph as an
input. However, since there are 11 driving cycles for LDGVs, with 11 corresponding point
estimates of emissions for average speed, the model will interpolate between driving
cycles. Interpolation between driving cycles is actually a form of extrapolation. This is
because driving cycles are not characterized only by average speed, but also by time-
dependent speed and acceleration profiles. The differences among driving cycles can not
be explained solely by average speed. Thus, it is a misuse of the data to “interpolate”
between driving cycles. It is more appropriate to consider methods by which multiple

driving cycles may be combined to develop more representative emission estimates.

The driving cycle emissions data sets were analyzed using both deterministic and
probabilistic approaches. The probabilistic analysis is based on existing data from several
driving cycles. A new approach based upon a mixture distribution for the driving cycle
emissions is discussed. The mixture distribution for driving cycle emissions is based upon
a mixture distribution for speed. This mixture distribution for speed depends upon the
availability of empirical data regarding vehicle speeds. To demonstrate the application of
this approach, two case studies based upon speed data from a segment of Interstate 40 (I-
40) near Raleigh, NC, were carried out. In the next section, the methodology used for the

analyses is described.
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A first step is to characterize variation in emissions for each of the driving cycles.
The analyses focus on hot stabilized exhaust emissions of LDGV of Technology Group 12
(TG12) for selected driving cycles. This group was selected because it is comprised mostly
of recent model year vehicles. The Mobile5a deterministic estimate for a particular model
year is based on a weighting of emissions across all technology groups. In this analysis
the deterministic emission estimate of Mobile5a across all technology groups is compared

to the mean of a probabilistic estimate obtained from the emissions distribution for TG12.

7.3 Data files for the Speed Correction Factors in Mobile5a

The data files used to develop the speed correction factors in MobileSa were
obtained from EPA and analyzed for this study. The data analyzed in this study included

emissions of CO, HC and NOx for eight of the eleven driving cycles with average speeds

ranging from 2.45 mph (LSP1) to 48 mph (HFET). The driving cycle characteristics of all
eight cycles are described in Table 7. The higher speed cycles data were not included in
this analysis because these data were for a different population of vehicles. A unique
feature of the data set analyzed in this study is that the same group of 673 vehicles were
tested for five of these cycles, with 302 of these vehicles also tested on the three slowest
average speed cycles. The driving cycle emissions for the set of 673 vehicles were
classified into Technology Groups and analyzed. The exhaust emissions from LDGV of

TG12 for each speed cycle were used for the probabilistic analysis.

7.3.1 Frequency Distribution for Speed

To characterize variability in speed for an actual highway, we obtained data
collected by Nagui Rouphail and Steven Click of the Department of Civil Engineering at the

North Carolina State University. As a part of a separate project, an advanced area-wide
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traffic detection device has been employed to measure micro and macro statistics for
individual vehicles and overall traffic flow, respectively. The advanced traffic detector,
called Mobilizer, is representafive of a new generation of video based traffic detection
systems. Traffic detectors such as Mobilizer offer an empirical basis for the development of
input assumptions for emissions models. In fact, a key shortcoming of emission factor
models is that their input requirements typically far exceed the information available
regarding on-road vehicles. A key example is the estimation of average speed, which is a
required input for Mobile5a. Conventional traffic detectors, such as loop detectors,
measure vehicle counts and vehicle occupancy. Speed can not be directly measured with
these commonly used systems. Furthermore, even if an average speed is known, it is quite

likely that none of the driving cycles that underlie Mobile5a will correspond to the on-road

‘conditions. However, by having the capability to measure a frequency distribution for

speeds under real-world conditions, it is possible to optimize the use of emissions data

from existing driving cycles.

Vehicles on westbound I-40 near Cary, NC were taped from the Reedy Creek road
overpass on May 31, 1995 from 7:50 a.m. for about 80 minutes. Two lanes of Wade
avenue merge with I-40 near the site where the video was recorded. The camera was placed
a short distance beyond the point of the merging and vehicles in all four lanes were
recorded. The speed data on individual vehicles were obtained from the video tape, by

making use of Mobilizer.

Mobilizer has the ability to determine individual vehicle speed, vehicle density,
vehicle headways, overall flow, and the percentage of trucks. The Mobilizer can display
each of these statistics by lane and as an aggregated statistic depending upon the time
interval specified by the user. The Mobilizer distinguishes the presence of a vehicle by a

change in the background pixel color. Therefore if a vehicle is moving at very low speeds,
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the Mobilizer may not be able to monitor that vehicle. The Mobilizer also has difficulty

tracking a vehicle if it changes lanes

7.3.2 Input Assumptions for Deterministic and Probabilistic Analysis
of Emissions

The deterministic analysis was carried out for the entire LDGV fleet of the 1991
model year. The probabilistic analysis focused on LDGVs of TG12. For the probabilistic
analysis, input assumptions to Mobile5a reflect only these vehicles for which we have
performed a statistical analysis of the emissions data. Table 9 summarizes the input
assumptions that were made in the .input file for both the deterministic and probabilistic

versions of MobileSa.

7.4 Methodology For Probabilistic Analysis of Emissions

Frequency distributions of speeds were obtained from measurements of traffic on I-
40. Distributioﬁs were available for each of four individual lanes, and also in aggregate for
all lanes. The measured speeds ranged from three to 80 mph. Since the maximum speed
contaiﬁed in the eight driving cycles analyzed here is only 60 mph, the analysis of the speed
data was only for those vehicles with speeds less than or equal to 60 mph. In order to
compare with driving cycle data, the frequency distributions for speeds were weighted
based upon the amount of time a vehicle would spend on any given length road, rather than
based upon vehicle counts. Thus, the data for high speed vehicles received less weight than
the data for low speed vehicles. The adjusted frequency distributions for measured speeds

were then compared to the frequency distributions of speeds for each of the driving cycles.
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A numerical simulation approach was used to determine which mixture of standard
driving cycle speed distributions best fits the observed frequency distribution for speed. A
probabilistic modeling environment called DEMOS was used to simulate the frequency
distributions. Using the Monte Carlo analysis features of DEMOS, samples were selected
from each of the standard dfiving cycle speed distributions based upon user-specified
weighting factors. A mixture distribution of speed was thus created from multiple driving
cycles. The weights were adjusted to minimize the sum of square errors in the comparison
of the percentiles of the mixture versus measured distributions. The analysis focused on
two cases, which yielded different mixture distributions. These cases were for Lane 2 only
and All Lanes. Figure 6 shows a comparison of the CDFs for the mobilizer data and the
resulting mixture distribution for speed. The mixture has a large share of vehicles at low
speed or even at idle because all of the driving cycles contain significant portions of time
spent in low speeds. This is because driving cycles are meant to represent vehicle trips
from start to finish. The weighting factors obtained from this analysis were then employed

in the probabilistic analyses of emissions.

Probabilistic analyses of the HC, CO and NO, emissions for different driving
cycles that were used to develop the SCFs for LDGVs of TG12 in Mobile5a, were carried
out in another modeling environment called Analytica. Analytica is a probabilistic modeling
environment developed by Lumina Decision Systems of Los Altos, CA. The emissions
data for each driving cycle was sorted in ascending order. Using the Fractile distribution in
Analytica, 1000 samples for emissions data across each of the driving cycles were
generated. The Fractile distribution is used to represent an emperical dataset as a
continuous CDF. The input to a fractile distribution is a set of (n+/) numbers. Each
element in the list must be greater than or equal to the previous element. The (i+/)" element
specifies the (1/i)" fractile of the distribution. The probability density function bounded by

each pair of adjacent fractiles is assumed to be uniform. Thus the probability of sampling
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betweeen any two adjacent fractiles is the same(Henrion et al., 1996). As an example of
how the Fractile distribution is employed, consider the following hypothetical dataset of

emissions of three different vehicles across a driving cycle:

Vehicle Number CO Emissions (g/mi.)
| 3.5
2 7.8
3 4.6

To obtain a fractile distribution for this dataset, the emissions are sorted in an
ascending order. The matrix of the sorted data is the fractile distribution. In this example,
fifty percent of the emissions would be uniformly distributed between 3.5 g/mi and 4.6
g/mi. The other fifty percent of the fractile distribution would be uniformly distributed

between 4.6 g/mi. and 7.8 g/mi.

The use of an empirical Fractile distribution alleviates the need to fit a parametric
distribution to the input data. Attempts were made at fitting the SCF emission dataset to
lognormal and Beta distributions. First an attempt was made to fit a lognormal distribution
with two parameters (viz the geometric mean and the standard deviation) to the frequency
distribution of the SCF emissions data using the “fit-model” feature of the statistical
package called JMP. This was followed by an attempt to fit a four parameter Beta
Distribution to the frequency distributions of the SCF emissions data for each driving
cycle. This analysis was also carried out in JMP. In most cases neither the lognormal nor

the Beta distributional models enabled a good fit to the data set.

' For carrying out case studies for the All Lanes and Lane 2 of I-40, a model was
developed using the median LHS feature in Analytica. The weight factors obtained from the
mixture distribution for speed were used to determine what sample from each cycle would
be included in the predicted mixture distributions for emissions. For example, in the case

study for All Lanes, weight assigned to the FTP Bag 2 driving cycle is 0.50. Thus 500 of
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the 1000 samples that were generated for this cycle were used in the mixture distribution.
Similarly the weight assigned to the SCC36 cycle was 0.40 and the weight assigned to
HFET cycle was 0.10. Thus 400 of the samples for the SCC36 cycle and 100 of the
samples generated for the HFET cycle were assigned to the mixture distribution. In the case
study for Lane 2 of I-40, samples were assigned to the mixture distribution from four
driving cycles. The SCC12 driving cycle was assigned a weight of 0.20, the FTP Bag 2
and the SCC36 cycles were assigned weights of 0.35 each while the HFET cycle

contributed the final ten percent of the samples in the mixture distribution.

In this case study, the emission rates for hot stabilized mode were used based upon
vehicle test data for each cycle. This is not the way that Mobile5a was developed.
Mobile5a estimates are based upon BERs which are then adjusted by a SCR. The BER is
based upon a larger dataset obtained from IM240 tests. This dataset may include more high
emitting vehicles than the SCR dataset. Therefore it should be expected that the point
estimates from Mobile5a would be higher than the average results of this probabilistic case

study.

7.5 Model Results

The deterministic version of the Mobile5a model was run for several cases to
provide a basis for comparison with the results of the probabilistic model. The results
obtained for the deterministic cases represent emission estimates for LDGV of all the
thirteen technology groups. These cases include one each for: (1) the average speed of
each (;f the eight driving cycles; (2) the average speed of the observed speed distributions
for I-40; and (3) the speed of 58.1 mph, based on previous work of the state air quality
agency. For urban interstate highways, a typical average speed of 58.1 mph has been used

in developing emission inventories for ozone air quality modeling. The results for HC,
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CO, and NOy emissions predicted from the deterministic runs of Mobile5a are shown in

Table 10.

The probabilistic version of Mobile5a was run using different frequency
distributions for HC, CO ar;d NOx emissions for eight driving cycles. Figure 7 to Figure 9
illustrate the variation in HC, CO and NOx emissions respectively, for each cycle, for
TG12. The point estimates obtained from the deterministic runs are also shown in the
figures. The means of the probabilistic HC and CO emission estimates vary significantly
from the point estimates in most cases. The means of the probabilistic NOx emission

estimates show relatively smaller variation in comparison to the point estimates.

In most cases, the mean value of the HC emission factors obtained from the 111
vehicle data points were lower than the Mobile5Sa point estimates for the eight driving cycles
studied in this analysis. Of course, the deterministic analysis is based upon a weighted
average of all technology groups while the dataset employed in this analysis is specific to
TG12. Thus, a possible source of difference is due to the potentially higher HC emissions
for the other technology groups that are included in the deterministic analysis. However,
TG12, comprises the majority of new registered vehicles for the 1991 calendar year used in
the analysis. Another source of difference can be accounted to the fact that the point
estimates of Mobile5a are based upon BER which are not accounted for in this analysis.
The variability in HC emissions typically spans more than an order of magnitude from the
lowest to the highest emitter. The confidence interval varies from plus or minus 25 to 50

percent in most cases. Thus, there is considerable uncertainty in predicting the mean.

The differences in the deterministic and probabilistic estimate of CO emissions are
more pronounced in most cases compared to the HC emissions. For example, although the

SCF is highly sensitive to speed at low speeds, the data indicate no significant difference in
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emissions for the four lowest speed cycles. In most cases, the uncertainty in the mean

values range from plus or minus 30 to 50 percent.

The confidence intervals of the mean values of the NO, emissions data for the eight
driving cycles, with few exceptions, enclose a value of 0.5 grams per mile. This implies
that there may be relatively little variation in NO, emissions as a function of the different
driving cycles. The uncertainty in the mean is lower for NO, emissions than either HC or
CO, with a range of typically plus or minus 10 to 20 percent. The variability in emissions

covers an order-of-magnitude or more in most cases.

An alternative probabilistic approach to emissions estirmation is demonstrated to
illustrate how the driving cycle data may be better utilized. The probabilistic version of
Mobile5a was run using mixture distributions for driving cycle emissions that were
developed based upon mixture distributions for speed, for both Lane 2 and All Lanes of I-
40. These two cases were done to illustrate the variability in exhaust emissions based on
alternative mixture distributions. A comparison of the deterministic and probabilistic
modeling results for exhaust emissions based upon speed data for Lane 2 of [-40 is given
in Figure 10. Figure 11 contains results based upon speed data for all four lanes of 1-40.
As described above, the point estimate is expected to be higher then the average results of
this probabilistic case study. But in contrast to this expectation, the default point estimates
for HC and CO for the Lane 2 case are lower than the mean estimate from the probabilistic
analysis. This indicates that the BERs and/or the SCF used to calculate these point
estimates are in error. Furthermore, uncertainty in the mean value of the emissions, due to
the limited sample of vehicles used to develop the emissions data set, is significant, ranging
from plus or minus 10 to 40 percent over the cases considered here. The confidence
interval calculated here does not address uncertainty due to the potential lack of

representativeness of the measured vehicle fleet or to systematic errors between driving
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cycle measurements and actual on-road emissions. Thus the confidence intervals represent

a lower bound on the uncertainty of the emission factors

Two alternate point estimates were considered. One is a case using the [-40
measured average speed as the input to MobileSa. In the cases of HC and CO, this led to

an increase in the predicted emissions rate. In the case of NOgx, the point estimate for the

average speed of the 1-40 data sets yielded substantially lower estimates of emissions
compared to the default value. In all cases, the measured average speed did not correspond
to any driving cycle within Mobile5a; therefore, the model extrapolated using the speed
correction factors. Another point estimate was developed by combining the point estimates
for each driving cycle with the weighting factors developed from the mixture distribution
analysis of speeds on I-40. This represents an approach in which no effort is made to
interpolate or extrapolate from the driving cycles. However, due to the biases in the speed
correction factors, this approach was not able to yield an accurate point estimate of

emissions when compared to the means of the probabilistic analyses.

The probabilistic analysis of emissions based upon the measured speed
distributions yielded broad estimates of variation in emissions even for a single technology
group of vehicles. For all three pollutants and both probabilistic case studies, the

emissions vary by one to three orders-of-magnitude.

7.6 Discussion

Since the mixture distributions are based upon emissions from individual driving
cycle, the magnitude of variation observed in the mixture distribution is more than that of

any single individual driving cycle. The ranges of uncertainties in the fleet average
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emissions, obtained using the mixture distributions for HC, CO and NO, are shown in

Table 11.

The current approach for predicting emission factors interpolates between average
speed of driving cycles. The methodology described here does not require any
interpolation. Besides, the methodological approach developed here can be extended to any
driving cycle data set, although the analyses here are based upon driving cycles with
known limitations. Furthermore the approach described here allows existing data which
has been collected at considerable expense to be used in conjunction with the newer driving
cycle data. Therefore, this approach is much improved in comparison to the conventional

approach that is being employed to predict the emission factors.

While this analysis has focused on frequency distributions for speed, the approach
can be extended to account for acceleration events by including acceleration as a criteria in
developing weighting factors for the driving cycles. However acceleration data are not

typically available from either conventional or advanced traffic detection devices.

There are, of course, a number of shortcomings inherent in the use of driving cycle ‘
data. Studies by CARB suggest that on-road conditions lead to higher emiséions than
those obtained in dynamometer testing. Thus, driving cycle emissions data may not be
representative of the emissions from the on-road fleet. Chapter 8 describes an alternative
approach for analyzing the uncertainty and variability in the predicted emission factors from
individual driving cycles. In Chapter 8 the emission factors have been analyzed as a

function of BERs and SCFs using alternative models.

81



Table 9. Key Input Assumptions to the MobileSa Model.

-T)escription Value
Technology Group 12 (PFI 1987 and 3W catalyst)®
VMT Mix LDGV = 0.993, all other classes =0.001°
Temperature 60-84 F
Calendar Year and Model Year 19912
I/M Programs None

4 For Probabilistic Analysis Only

b Mobile5a requires that all vehicle classes be assigned a minimum fraction of 0.001

Table 10. Exhaust Emissions for Deterministic Analysis of Mobile5a.

Speed (mph) | HC (g/mi.) | CO (g/mi.) | NO, (g/mi.) Comment
2.45 1.41 22.00 0.90 Average Speed of LSP1 Cycle
3.63 1.03 16.10 0.79 Average Speed of LSP2 Cycle
4.02 0.94 14.73 0.77 Average Speed of LSP3 Cycle
7.10 0.58 9.24 0.68 Average Speed of NYCC Cycle
12.10 0.39 6.29 0.63 Average Speed of SCC12 Cycle
16.10 0.32 5.26 0.61 Average Speed of FTP Bag 2
19.60 0.28 4.71 0.60 Average Speed of FTP Cycle
26.00 0.22 3.49 0.62 Average Speed for Lane 2 of 1-40
28.80 0.20 3.12 0.62 Average Speed for All Lanes of I-40
35.90 0.17 245 0.63 Average Speed of SCC36 Cycle
48.40 0.14 1.78 0.65 Average Speed of HFET Cycle
58.10 0.15 2.44 0.87 Default Speed for Urban Interstate

Table 11 Uncertainties in the Mean of the Fleet Emissions Obtained from
Mixture Distribution of Emissions for I-40,

Random Error on Mean based on a 95%

Pollutant
_ Confidence Interval
HC 30 to 40 percent
CO 25 to 40 percent
NO, 10 to 135 percent
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for Speed Using Different Driving Cycles

83



LSP1 (2.45) SCC12 (12.1 mph)
| Max =13.18 g/mi | Max =3.47 g/mi
‘ |
=8
& 0.5 /.T‘,
T— . 0 . ) | PR t
2 0 1 2
LSP2 (3.63 mph) FTP Bag 2 (16.1 mph)
| Max = 12.11 g/mi [ ; Max = 4.43 g/mi
& 05 505 7 i
0 - . i 0 [T S - i
0 1 2 0 1 2
LSP3 (4.02 mph) SCC36 (35.9 mph)
| Max = 27.89 g/mi |
o r ;
o 0.5
0 R |
0 1 2
NYCC (7.1 mph) HFET (48.4 mph)
| Max = 5.33 g/mi |
S 0.5 ? ’
-~ b 0 } - . . . | .
0 1 2 0 1 2
i HC Ernissigns (g/nﬁL HC Emissions (g/mi)
Probabilistic Emission Estimates are for LDGV of Technology Group 12.
Deterministic Emission Estimates are for LDGV of All 13 Technology Groups
Key: CP - Cumulative Probability 111 Vehicles Tested
Inter-Vehicle —8— Mean of Emissions with Mobile5a Result for
Variability 95% Confidence Interval Average Speed of

Cycle

Figure 7. Comparison of Observed Variations in Exhaust HC Emissions
for Technology Group 12 for Different Driving Cycles to MobileSa
Predicted Value for All Light Duty Gasoline Vehicles

84



LSP1 (2.45 mph) SCCI2 (12.1 mph)
Max =202.8 g/ml Max =51.8 g/rnl

CP
o

0 10 20 30

LSP2 (3.63 mph) FTP Bag 2 (16.1 mph)
Max = 188.3 g/mi Max = 77.2 g/mi

CP
o
S W o—
CP
[
o —

Co 0 H . S .
0 10 20 30 0 10 20 30
LSP3 (4.02 mph) SCC36 (35.9 mph)
Max =313.1 g/mi Max = 30.6 g/mi

CP
o
oS

0 10 20 30

0 10 20 30
NYCC (7.1 mph) HFET (48.4 mph)
Max = 82.6 g/mi

CP
o
S W -

0 10 20 30

CO Emissions (g/mi)

CO Emissions (g/mi)

Probabilistic Emission Estimates are for LDGV of Technology Group 12.
Deterministic Emission Estimates are for LDGV of All 13 Technology Groups

Key: CP = Cumulative Probability 111 Vehicles Tested
Inter-Vehicle —&—\ean of Emissions with Mobile5a Result for
Variability 95% Confidence Interval Average Speed of

Cycle

Figure 8. Comparison of Observed Variations in Exhaust CO Emissions
for Technology Group 12 for Different Driving Cycles to Mobile5a

" Predicted Value for All Light Duty Gasoline Vehicles

85




LSPI (2.45 mph) SCCI12 (12.1 mph)
‘ Max = 3.42 g/mi

CP
o
o L —
CP
o
o W —
-'}I

0 l 2
LSP2 (3.63 mph) FTP Bag 2 (16.1 mph)
1 1
8 0.5 //_T/_’_—‘ 83 s
0 [ ! i I [ 0 . ! \
LSP3 (4.02 mph) SCC36 (35.9 mph)

Max = 2.14 g/mi

1 2
NYCC (7.1 mph) HFET (48.4 mph)
| Max = 2.6 g/mi Max =238 g/mi -
1 -
a.
& 05 /)(‘
0 . [ . . } |
0 | 2
NOx Emissions (g/mi) NOx Emissions (g/mi)

l-jrobabilistic Emission Estimates are for LDGV of ’I—‘échnology C-}roup 12.
Deterministic Emission Estimates are for LDGV of All 13 Technology Groups

Key: CP =Cumulative Probabilify 111 Vehicles Tested
Inter-Vehicle —a- Mean of Emissions with Mobile5a Result for
Variability 95% Confidence Interval Average Speed of

Cycle

Figure 9 Comparison of Observed Variations in Exhaust NOx Emissions

for Technology Group 12 for Different Driving Cycles to MobileSa
Predicted Value for All Light Duty Gasoline Vehicles.

86



JH EE EHE N

Probabilistic Mean = 0.15% 0.06 g/mi

cooo
o OB N —

Cumulative
Probability

.00 0.20 0.40 0.60

HC Emission Factors (g/mi)

o
0.8 1.00

Probabilistic Mean = 2.69 £ 1.04 g/mi

cooo
ON B O\NOO —

Cumulative
Probability

] R - SO B

0.0 5.00 10.00 15.00

CO Emission Factors (g/mi)

Probabilistic Mean
= 0.36x .05 g/mi

Cumulative
Probability

cooo
OB ONOO —

=i t f I

0.20 0.40 0.60 0.80 1.00

NOx Emission Factors (g/mi)

e
o
S

Probabilistic Emission Estimates are for LDGV of Technology Group 12.
Deterministic Emission Estimates are for LDGV of All 13 Technology Groups.
Model Results are based upon data collected for I-40 on May 31, 1995.
Average Speed of Lane2 was 26 mph
Mixture Distribution for Speed for Lane 2 of 1-40:

20 % SCC12, 35 % FTP Bag 2, 35 % SCC36 and 10% HFET

Key:
=== Probabilistic Estimate for =~ ------ Deterministic Estimate for
Variability in Emissions Average Speed
—_——— Deterministic Estimate - —  Weighted Average of Point
for 58.1 mph Estimate for Cycle Emissions

Figure 10. Estimated Variability in Exhaust Emissions Based upon a
Mixture Distribution for Variation in Speed for Lane 2 of 1-40

87



Probabilistic Mean = 0.07+ 0.02 g/mi

cooo
OB N0 —

Cumulative
Probability

I (S - = I

0.00 0.20 0.40 0.60
HC Emission Factors (g/mi)

- ! - . [
0.80 1.00

Probabilistic Mean = 0.94 £ 0.25 g/mi

cooo

Cumulative
Probability

B . I . [N - - e — - RV
10.00 15.00 20.00

CO Emission Factors (g/mi)

o
S
wo
o i
S

1
2208 |
EF 06 |
223 04 Probabilistic Mean -
SE 02 =031+ .043 g/mi !
0 " . . - . . . I», | | | | I . .
0.00 0.20 0.40 0.60 0.80 1.00

NOx Emission Factors (g/mi)

Probabilistic emission estimates are for LDGV of Technology Group 12.
Deterministic emission estimates are for LDGV of All 13 Technology Groups.
Model results are based upon data collected for [-40 on May 31, 1995.
Average speed of All Lanes was 28.8 mph
Mixture Distribution for Speed for All Lanes of I-40:

50 % FTP Bag 2; 40 % SCC36 and 10% HFET

Key:
= Probabilistic Estimate for ~ ------ Deterministic Estimate for
Variability in Emissions Average Speed
— = Deterministic Estimate — =—  Weighted Average of Point
for 58.1 mph Estimate for Cycle Emissions

Figure 11. Estimated Variability in Exhaust Emissions Based upon a
Mixture Distribution for Variation in Speed for All Lanes of I-40.

88

s N O .



m - -‘ _

8.0 ANALYSIS OF UNCERTAINTY AND VARIABILITY IN EMISSION
FACTORS

This chapter focuses more specifically on the development of probabilistic
representations of emission factors for individual driving cycles than does the previous
chapter. The purpose is to take a bottoms-up approach to the development of an alternative
probabilistic version of MobileSa. The method involves a detailed analysis of the data used
to develop the BERs and the SCFs. This method can be extended to other components of
the model. The results of the analysis provide insight regarding uncertainty and variability
in predicted emission factors. Differences in the approach can have implications for the
characterization of bias due to the way the data were analyzed in developing the

deterministic model.

This chapter analyzes the effects of the transforming the IM240 data to FTP data on
the BERs in the MobileSa model. As a starting point for investigating the variability and
uncertainty in the emission factors predicted by the Mobile5Sa model, two models to predict
the emission factors as a function of the BERs and SCFs were developed in a probabilistic
environment called Analytica. The analysis in this paper is focused on vehicles classified
as TG12 and Technology Group 8 (TG8) in the Mobile5a model. These two groups were
chosen for the analysis because they comprise about 95 percent of the most recent model
year vehicles of the on-road fleet. The variability and uncertainty in the predicted emission
factors is illustrated by analyzing the results obtained from the new probabilistic models.
The probabilistic case studies and comparable point estimates were developed for each of
the 11 driving cycles underlying Mobile5a at a mileage accumulation level of 50,000 miles.
To begin with, alternative models for BERs of LDGV from TG12 and TG8 were
developed using the transformed IM240 to FTP dataset. These BERs were then corrected

for non-standard average driving cycle speeds by using a speed correction ratio (SCR). A
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point estimate of emissions for each driving cycle was calculated for comparison with the
means of the probabilistic case study. The point estimates were calculated as a product of
the BERs developed in this analysis and technology-specific SCFs. The technology
specific SCFs used in the point estimate analysis were obtained by using regression

coefficients developed by EPA in their analysis of the SCF data.

8.1 Similar Studies

Studies at the University of Tennessee have investigated the uncertainty in the speed
correction factors in Mobile5a using the bootstrap approach (Guensler, 1993; NCHRP,
1995). A bootstrap approach is a Monte Carlo style simulation technique (Berg, 1992;
Efron and Tibshirani, 1993; NCHRP, 1995) that can be employed to estimate the upper
and lower bounds of an analytical confidence interval and to develop a probabﬂity
distribution function for an analysis. In the study at the University of Tennessee, a basic
program was written to develop 1000 resampled data sets, calculate the average emission
rate and the baseline exhaust emission rate (Bag 2) results of the resampled data for each
test cycle, estimate the regression intercept and slope coefficients for the regression

function. The regression function used in this analysis was:
ER/ER,, , = B0 + B1(1/Speed) +e (6)

The output predicted SCFs for average speeds in 2 mph increments. For each speed in 2
mph increments, the SCF results from the 1,000 runs are rank ordered to establish the
probability distribution function, where the probability of each predicted value is
established as 1/1,000. The rank order values at 2.5 percent and 97.5 percent represent the
95 percent confidence interval around the mean response for any average speed (NCHRP,

1995).
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These studies had their own limitations. They assumed that the SCF model in
MobileSa was correct. That might not be the case. Also, these studies interpolated
between average speeds of different driving cycles which again is not appropriate. The

analysis described in this chapter does not have these limitations.

8.2 Data for BERs and SCFs in Mobile5a

The data files used to develop the BERs and SCFs in Mobile5a were obtained from
the EPA’s National Motor Vehicle Fuels and Emissions Laboratory, Office of Mobile

Sources at Ann Arbor, Michigan.

The datafiles for the BERs contained HC, CO and NO, emissions data from 646
vehicles tested on the IM240 and FTP driving cycles. These data were used by the EPA to
develop the regression equations to transform IM240 data to corresponding FTP data. The
datafiles also contained information on the predicted values and residuals obtained from the
regression analysis. In addition to this, the MobileSa BER dataset also contained emissions
data and mileage information for cars tested on the IM240 cycle in the Hammond Program..
These emissions data were transformed to predicted emissions data for the FTP driving
cycle data. The predicted FTP values were then used to develop the ZML and deterioration

rates in the Mobile5a model (SAI, 1994; Sierra, 1994). The data used for the development

of the BERs are not the same as those used for the development of the SCFs. The data for

the SCF have been described in Chapter 7.
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8.3 Methodology

The BER equation used by Mobile5a has been described in Chapter 4. In the BER
equation, EPA does not account for the error intréduced by transforming the IM240 data to
predicted FTP data. In addition, the EPA model does not account for the residual error that
arises from the regression of the predicted FTP values versus the mileage accumulation.
This later regression provide the ZML, DR1 and DR2 for the BER. The error for the
IM240 to FTP regression model estimate is multiplicative in case of HC and CO, since the
IM240 to FTP regressions for HC and CO were done by EPA using a log-log
transformation. In case of NO, this error is additive since no log transformations were
done. For the development of the BER model, linear regressions were done as a function

of mileage accumulation. Therefore, the error term in this case is additive.

To account for these sources of error and to analyze the uncertainty and variability
in the emission factors, alternative probabilistic models to predict the exhaust emissions for
light duty gasoline vehicles were developed and implemented in Analytica. Two alternative
functional forms were considered in developing the equztions for the BER. A Linear model
based on EPA’s current approach was used. In addition a log-linear BER model was
developed to more appropriately represent the variation in base emissions. The additional
error components described above were included in both of the new models. These model
consisted of a BER module which was then corrected by a SCF module to calculate the

emission factors for each driving cycle.

The BER module consists of a zero mile level and a deterioration rate. These were
obtained from regression analysis of the IM240-to-FTP transformed data versus the

mileage accumulation. The residual errors from this mileage accumulation model and the
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IM240-to-FTP transformation model used by EPA, were also included in the BER module
as Error 1 and Error 2 respectively. The functional forms of the emission factor model

based upon a linear BER for HC and CO is given below:

EF = [ {ZML + DR1eMA + Err 1}eErr 2] ¢ SCF (7)

where:
EF = Emission Factor in grams/mile
ZML = Zero Mile Level (grams/mile)
DR = Deterioration Rate for mileage less than 50,000 miles
MA = Mileage Accumulation
Errl = Additive Error term in the regression model consisting of the residuals from the
mileage accumulation model
Err2 = Multiplicative Error term consisting of the ratio of predicted to residuals from the
Log linear model used to transform the IM240 dataset to corresponding FTP dataset

SCF = Speed Correction Factor

For predicting NOx emission factors, the functional form of the emission factor

models based upon a linear BER expression was:

EF = [ {ZML + DR1eMA + Err 1}+Err 2] ¢ SCF (8)

As described above, the Error 2 term in the models for NO, emissions is additive
because the transformations of the IM240-to-FTP NO, data were done by EPA in a linear

space and not in a log space.
Figure 12 and Figure 14 show that the estimated FTP emissions vary by an order-

of-magnitude or more, and also that the residual error from the linear regression is not

normally distributed. Thus, the basic assumption inherent in linear least squares regression
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is not satisfied. Therefore a second set of alternative models were developed to analyze the
BERs and the emission factors in log space. The residuals for the logarithm of emissions
are more nearly normally distributed; therefore, a log-linear approach is more appropriate in

these cases. The following log model was assumed for the BERs:
Log BERs = (ZML + DR1eMA + Errl) (9)

which was equivalent to

BER = Exp(ZML + DR1¢50,000 + Errl) (10)

Using this BER model, log-linear models for calculating emission factors for
different driving cycles were developed. The functional form of the log-linear BER based

emission factor models is shown by:

EF = [ Exp{ZML + DR1eMA + Err 1}eErr 2] ¢ SCF (11)

Similarly, for predicting NO, emission factors, the functional form of the log-linear

models is:

EF = [ Exp{ZML + DR1eMA + Err 1}+Err 2] ¢ SCF (12)

8.4 Case Study Assumptions

For the purpose of a demonstration case study, the emission factors were analyzed
assuming a mileage accumulation of 50,000 miles. The data used to develop the BERSs in
Mobile5a were sorted to obtain vehicles with a mileage accumulation equal to or less than
50,000 miles. In EPA’s analysis, the emissions data from vehicles with zero mileage were
ignored (SAI, 1994). For this analysis also, the vehicles with zero mileage accumulation

were deleted from the dataset.
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8.5 Variability Analysis

From the datafile received from EPA, 1506 vehicles were identified as vehicles of
TG12. The datafile contained 796 vehicles that were identified as vehicles of TGS. A
regression analysis was carried out on the emissions data set to obtain a value for ZML and
DR1 for each pollutant for this analysis. The distribution of the residuals from the
regression analysis was used to develop a probabilistic representation of the ERR1 term.
Figure 12- Figure 15 show the estimated and predicted HC, CO and NO, FTP emissions
for the LDGV of TG12 and TGS for the linear and log linear models respectively. The
estimated FTP emissions are the transformed IM240 data collected at Hammond while the
predicted emissions were calculated using the ZMLs and DR1s shown in Table 12. The
residuals were obtained as the difference between the observed and the predictéd
emissions. These residuals were input as a Fractile distribution in the probabilistic models.
The residuals from the dataset used to obtain the IM240 to FTP transformations were used
as the multiplicative ERR2 term in the analysis. Figure 16 shows the ERR2 data used in

this analysis. These were also input as Fractile distribution in the probabilistic models.

The SCRs for each of the driving cycles for LDGV of TG12, for each of the three
pollutants (viz., HC, CO and NOx) were calculated as ratios of the driving cycle emissions

of each car tested across the driving cycles, to their own FTP Bag 2 emissions. The SCRs

for each driving cycle were also input as Fractile distributions in the probabilistic models.
As mentioned in Chapter 7, the use of a fractile distribution does not require making

assumptions regarding selection of an arbitrary parametric probability distribution to
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represent the data. Figure 17 to Figure 22 show the SCFs for HC, CO and NO, emissions

for TG12 and TG8 respectively.

The point estimates for the low and mid speed cycle SCFs were developed using
the model for the SCF (Equation 4) described in Chapter 4. The technology specific
regression coefficients “A” and “B” were obtained from EPA. Thus, the point estimates
shown in Figure 17 to Figure 22 represent technology-specific speed correction factors.
The point estimates for the high speed cycles could not be developed because of lack of
information on the regression equation and coefficients used by EPA in the Mobile5a

model.

8.6 Uncertainty

Uncertainty in the mean emissions represents the uncertainty in the fleet average
emissions. The uncertainty in the mean emissions can typically be attributed to a large
inter-vehicle variability, a small sample size or both. Uncertainty analysis of the mean
emissions provides insights regarding the random and systematic errors in the emission

estimates.

For analyzing the uncertainty in the mean emissions, the mean SCFs for each
driving cycle were assumed to be normally distributed with means and standard deviations
(standard error of the meahs) shown in Table 12. This assumption was based on a result
derived from the Central Limit Theorem. The result is that for a large sample size, the
distribution of means for any distribution tends towards a normal distribution (Hahn and
Shapiro, 1994). The assumption for normal distribution of the mean SCFs was further

justified with bootstrap simulations on the SCF data. These simulations were done in
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Analytica. Using the random Monte Carlo feature in Analytica, distributions of mean

emissons for each driving cycle were generated by changing the random seed.

Figure 23-Figure 28 compare the residual distributions for the mileage
accumulation term (Errl) from the linear and log linear models. In the uncertainty analysis,
the mean Errl and Err2 terms were assumed to be normally distributed. The inputs
described in Table 12 were used in the linear and log-linear models described above to
calculate distributions for the mean HC, CO and NO, emissions. These distributions for
the mean emissions represent the uncertainty in mean emissions. The results of the

demonstrative case studies for variability and uncertainty are discussed in the next section.

8.7 Results

The probabilistic models for variability and uncertainty analysis were run using the
Monte Carlo simulation feature in Analytica to obtain 1000 samples of emission factors
across each driving cycle. These samples are a measure of the variability in emission
factors and uncertainty in the mean emission factors, across each driving cycle in Mobile5a.
To analyze the effect of the multiplicative error term (Err2) on the HC BER and CO BER,

the linear and Log linear models were run with and without the Err2 term.

The results from the uncertainty analysis were used to provide insights regarding
the systematic and random error inherent in the point estimates predicted by Mobile5a when
compared to probabilistic results. The random errors can be calculated based on a 90
percent confidence interval for the mean. The following equation can be used to calculate
the 90 percent confidence interval for the mean

Cl,=*1.645¢§ (13)

n 0.5
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where:
Cl,, = Confidence Interval on the Mean on a 90 percent probability range
S = Standard Deviation of dataset under consideration
n = nu;nber of samples in the dataset under consideration

The random errors can be quantified on a relative basis as the fractional difference
between the mean and the Sth percentile value of the mean obtained from the probabilistic
analysis divided by the mean value. For example, the value of the 5th percentile of the
distribution of mean HC emission factors for LDGV of TG12 for the LSP1 cycle is 7.4
g/mi while the value of the mean is 9.5 g/mi. Therefore the random error would be
calculated as (9.5-7.4)/9.5 =0.23. The distribution for the mean emission factors is
symmetric and, therefore, random error can also be calculated by using the 95th percentile
value instead of the 5th percentile value. Also, using the 95th percentile value and the mean
of the normal distribution, other parameters such as the standard deviation and coefficient
of variation for the normal distribution can be obtained using standard tables for areas
under a normal curve. For example, at the 95th percentile, a standard normal distribution

[N(0,1)] has a value of 1.645. Therefore, the standard deviation can be calculated as:

fos - X
1.645 (14)

The coefficient of variation can be calculated as the standard deviation divided by the mean

value and is given as:

>l v

(15)
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The systematic error can be calculated as the difference between the mean of the
probabilistic distribution for the mean emissions and the point estimate for the HC, CO and
NO, emissions for each driving cycle. The point estimates for the emission factors were
obtained by multiplying the BERs with point estimates of technology specific speed
correction factors. The BERs used for the deterministic point estimate were calculated
using the ZML and DR1 obtained from regression analysis of the BER data. As explained
above, in this analysis, the point estimates for SCFs for the high speed cycles were not
calculated. Therefore, in this study, no point estimate for the emissions factors for the

high speed cycles could be calculated.

To anaiyze the effect of accounting for the IM240-to-FTP residual error on the HC,
CO and NO, BER, the linear and log-linear models were run with and without the Err2
term. Figure 29-Figure 32 show the results of this analysis. For both TG12 and TG8
vehicles, the BER for all three pollutants predicted by the linear and log-linear models with
the IM240 to FTP residual error show greater variability as compared to the cases without
the IM240 to FTP residual error. The mean CO and HC BERs increase by about 25
percent as a result of accounting for the multiplicative IM240 to FTP residual error term
(Err2) in the log-linear BER model. This is because the distribution for the residuals is
lognormal with a median of one. The mean is larger than the median because the residuals
are positively skewed. This implies that failure to include this source of error leads to
underprediction of the BERs. In case of NO, the additive Err2 term does not affect the

mean BER significantly because magnitude of the residual error term is very smail.

8.7.1 Variability Analysis Results

The results of the variability analyses are shown in Figure 33-Figure 44. For
vehicles of both TG12 and TGS, the HC, CO and NO, emissions across the low speed

cycles (LSP1 to NYCC) show greater variation as compared to those across the medium
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(SCC12 to HFET) and high speed cycles (HSP1 to HSP3). The HC and CO emissions
vary by about two to three orders-of-magnitude while the NO, emissions vary by about one

to two orders-of-magnitude.

The variability in HC, CO and NO, emissions predicted by the linear model are not
significantly different from those predicted by the log-linear model. The magnitude of
variability in the BERs based on a 95 percent probability range, predicted by both the linear
and log-linear models is similar. Also, other components of the linear and log linear
models such as the Err2 term and the SCF used in the emission factor variability analysis
are identical. Therefore using either models does not significantly affect the range of
variability in emissions. Therefore it appears that for purpose of analyzing variability in
emission factors the use of a log-linear model would not provide any significant advantage
over a linear model. However, an analyst would typically be more interested in the
uncertainty on the fleet average emission factors. The next section describes the results of
the uncertainty analysis on the mean emission factors and the appropriateness of a log-

linear model for emission factors as opposed to the currently employed linear model.

8.7.2 Uncertainty Analysis Results

The results of the uncertainty analyses are shown in Figure 45-Figure 50. Table
13-Table 24 show the systematic and random error in the mean HC, CO and NO,

emissions, for LDGV of TG12 and TGS obtained using linear and log-linear models.
Figure 45 and Figure 46 show that for the low speed cycles, the random error in the

mean HC emission factor predicted by the linear and log-linear models for both TG12 and

- TGS is plus or minus 20 to 30 percent on a 90 percent probability range. In comparison to
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the mean, the point estimate underestimates emissions by a factor of 1.5 to 3 across the low
speed cycles. Across the mid speed cycles, the uncertainty in the mean HC emissions is
plus or minus 15 to 30 percentAon a 90 percent probability range. The point estimates
across these cycles underestimate emissions in comparison to the mean by a factor of up to
3. The uncertainty in the mean HC emission factors across the high speed cycles is plus or
minus 25 to 55 percent. As mentioned earlier, no point estimate was calculated for the high

speed cycles.

Figure 47 and Figure 48 show that for the low speed cycles, the random error in the
mean CO emission factor predicted by the linear and log-linear models for both TG12 and
TG8 is plus or minus 20 to 55 percent. The random error for the three lowest speed cycles
appears to be on the higher side and ranges from 35 to 55 percent. The mean CO emission
factor for the NYCC cycle exhibits a random error of about 20 percent. For the two lowest
speed cycles, the point estimate for CO emissions is overestimated by a factor of 1.2 to 2 in
comparison to the mean. But for the other two low speed cycles (viz., LSP3 and NYCC)
the point estimate underestimates emissions by a factor of 1.5 to 2. Across the mid speed
cycles, the uncertainty in the mean CO emissions is plus or minus 10 to 30 percent. The
systematic error across these cycles is approximately a factor of 1.2 to 2.5 on the lower
side. The uncertainty in the mean CO emission factors across the high speed cycles is plus

or minus 10 to 50 percent.

Figure 49 and Figure 50 show that for the low speed cycles, the random error in the
mean NO_ emission factor predicted by the linear and log-linear models for both TG12 and
TG8 is plus or minus 20 to 35 percent for a 90 percent probability range. The systematic
error across the low speed cycles is approximately a factor of 2 to 10 on the lower side.
Across the mid speed cycles, the uncertainty in the mean NO, emissions is plus or minus

20 to 40 percent on a 90 percent probability range. The point estimate across these cycles
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underestimates emissions by a factor of about 2. The uncertainty in the mean NO,

emission factors across the high speed cycles is plus or minus 25 to 80 percent.

From the uncertainty analysis results, it can be seen that the uncertainty in the mean
emissions is higher for the high speed cycles in comparison to the low speed and mid speed
cycles. For the high speed cycles, the uncertainty in the mean is attributed to a very small
sample size. The uncertainty in the mean for the low speed cycles is mostly due to large
inter-vehicle variability as shown by Figure 33 to Figure 44. A part of the uncertainty for
the low speed cycles can also attributed to the small sample size from which the SCFs

were developed.

The magnitude of random error on the mean emissions obtained by using both the
linear as well as the log-linear models is similar. However, the mean HC, CO and NO,
emission factors predicted by the log-linear models are less than the mean emission factors
predicted by the linear models by approximately ten percent. From Figure 23 to Figure 28,
it can be concluded that the residual errors for the mileage accumulation term in the BERS is
more normal for the log-linear models than for the linear case. This conclusion is based
upon the Shapiro-Wilk test for normality. Thus, the assumption of the mileage
accumulation residuals error term (Errl) being normally distributed is more valid for the
log-linear models than for the linear case. Therefore, the log-linear models for the mean

emissions would provide more accurate results than the corresponding linear models.

The Tables 13 - 24 can be used by to estimate the probabilistic mean fleet
emissions. To obtain the average fleet emissions, the systematic error term is subtracted
from the point estimate. The random error on the mean gives a 90 percent confidence
interval range for the mean. Thus, using Table 14 the probabilistic mean CO fleet

emissions for LDGV of TG12 for the FTP Bag 2 driving cycle can be calculated as 10.01
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g/mi - (-1.10 g/mi) = 11.11 g/mi. Using the random error term in Table 14, it can be said
with 90 percent confidence that the mean CO fleet emissions for LDGV of TG12 for the

FTP Bag 2 driving cycle could vary by around 9 percent of the probabilistic mean.

To determine which components of the uncertainty model contribute the most to
uncertainty in the final emission estimates, rank correlations for different parameters of the
uncertainty models were deterimned. Table 25 shows the rank correlations for the different
parameters of the uncertainty models for TG12. It can be seen that in most cases, the SCF
parameter contributes the most to uncertainty in the final emission estimates. This indicates

that the SCF module in the emission factor model needs to be re-analyzed.

8.8 Discussion

Linear and log-linear models were used in this analyses to investigate uncertainty
and variability in the emission factors. This analyses employed fractile distributions for
analyzing the variability and normal distributions for analyzing the uncertainty in the mean
emission factors. Previous studies on uncertainty in mean emissions have employed
bootstrap approaches where no parametric distributions were assumed to represent the
input data. However, the previous analyses on uncertainty in speed correction factors have
interpolated between driving cycles using an assumed speed correction equation.
Interpolation between driving cycles is actually a form of extrapolation. Therefore, the
results obtained in this analysis are more robust in comparison to the previous studies
because the variability and uncertainty analyses carried out in this study does not interpolate

between driving cycles.

Chapter 9 describes the conclusions to the probabilistic analysis and provides

recommendations for future analysis.
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Table 12. Input Assumptions for Uncertainty Analysis
Technology Group 12 Technology Group 8
Inputs Model 1 Model 2 Model 1 Model 2
(Linear Model) | (Log-linear Model)} (Linear Model) | (Log-linear Model)
ZML 0.2946 -1.231 0.3257 -1.332
DRI 0.0000077 0.0000095 0.0000037 0.0000094
HC BER Error | N(0, 0.024) N(0,0.014) N(0, 0.0191) N(0, 0.185)
(g/mi) Error 2 N(1.33, 0.064) N(1.33, 0.064) N(1.33, 0.064) N(1.33, 0.064)
LSP1 N(10.56, 1.308) | N(10.56, 1.308) N(9.87, 1.54) N(9.87, 1.54)
LSP2 N(7.56, 1.01) N(7.56, 1.01) N(10.46, 1.38) N(10.46, 1.38)
LSP3 N(12.67, 2.06) N(12.67, 2.06) N(17.74, 2.56) N(17.74, 2.56)
NYCC N(3.42, 0.408) N(3.42, 0.408) N(3.03, 0.60) N(3.03, 0.60)
SCCI12 N(3.92, 0.50) N(3.92, 0.50) N(2.92, 0.526) N(2.92, 0.526)
HC SCF FTP Bag2 N(1, 0) N(1, 0) N(I, 0) N(1, 0)
SCC36 N(0.8, 0.097) N(0.8, 0.097) N(0.569, 0.059) | N(0.569, 0.059)
HFET N(0.72, 0.06) N(0.72, 0.06) N(0.463, 0.049) | N(0.463, 0.049)
HSPI N(0.7, 0.147) N(0.7, 0.147) N(1.21, 0.199) N(1.21, 0.199)
HSP2 N(1.1, 0.192) N(1.1, 0.192) N(1.155,0.218) | N(1.155,0.218)
HSP3 N(2.6,0.84) N(2.6,0.84) N(1.16, 0.294) N(1.16, 0.294)
ZML 4.355 1.071 4.195 1.0372
DRI 0.000072 0.0000119 0.0000576 0.0000146
CO BER Error | N(0, 0.317) N(0,0.019) N(0, 0.23) N( 0, 0.026)
(g/mi) Error 2 N(1.39, 0.056) N(1.39, 0.056) N(1.39, 0.056) N(1.39, 0.056)
LSPI N(5.5, 1.14) N(5.5, 1.14) N(4.14, 1.23) N(4.14, 1.23)
LSP2 N(4.42,1.056) N(4.42,1.056) N(4.60, 1.49) N(4.60, 1.49)
LSP3 N(5.89, 1.81) N(5.89, 1.81) N(6.17, 1.92) N(6.17, 1.92)
NYCC N(4.401, 0.5) N(4.401, 0.5) N(3.75, 0.43) N(3.75, 0.43)
SCCi2 N(2.37, 0.322) N(2.37, 0.322) N(1.62, 0.22) N(1.62, 0.22)
CO SCF FTP Bag?2 N(1,0) N(1,0) N(1,0y N(1,0)
SCC36 N(0.95, 0.143) N(0.95, 0.143) N(0.76, 0.073) N(0.76, 0.073)
HFET N(0.714, 0.098) | N(0.714, 0.098) } N(0.473, 0.046) | N(0.473, 0.046)
HSPI N(0.7, 0.0334) N(0.7, 0.0334) N(0.513, 0.106) | N(0.513, 0.106)
HSP2 N(0.102, 0.0251) | N(0.102, 0.0251) | N(0.029, 0.006) | N(0.029, 0.006)
HSP3 N(0.149, 0.0359) | N(0.149, 0.0359) | N(0.031, 0.009) | N(0.031, 0.009)
ZML 0.4858 -0.86196 0.531 -0.7009
DRI 0.0000057 0.0000103 0.0000076 0.0000101
NOx BER Error 1 N(0, 0.008) N(0,0.014) N(0, 0.015) N(0, 0.016)
(g/mi) Error 2 N(0.0021, 0.109) | N(0.0021, 0.109) § N(0.0021, 0.109) | N(0.0021, 0.109)
LSPI N(2.54, 0.336) N(2.54, 0.336) N(3.22,0.39) N(3.22, 0.39)
LSP2 N(2.44, 0.33) N(2.44, 0.33) N(3.11,0.32) N(@3.11, 0.32)
LSP3 N(2.74, 0.45) N(2.74, 0.45) N(3.67, 0.504) N(3.67, 0.504)
NYCC N(3.07, 0.18) N(3.07, 0.18) N(2.29, 0.163) N(2.29, 0.163)
SCCl2 N(I, 0) N(I, 0) N(2.55, 0.55) N(2.55, 0.55)
NOx SCF FTP Bag2 N(1, 0) N(1, O N(L, 0) N(1, 0)
SCC36 N(1.5, 0.104) N(1.5, 0.104) N(1.09, 0.062) N(1.09, 0.062)
HFET N(1.44, 0.1) N(1.44, 0.1) N(0.888, 0.05) N(0.888, 0.05)
HSPI1 N(0.8, 0.079) N(0.8, 0.079) N(1.77, 0.476) N(1.77, 0.476)
HSP2 N(0.5, 0.15) N(0.5, 0.15) N(0.25, 0.095) N(0.25, 0.095)
HSP3 N(1.3, 0.44) N(1.3, 0.44) N(0.289, 0.14) N(0.289, 0.14)
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Table 13. Uncertainty in Predicted Mean HC Emission Factors for LDGV
of Technology Group 12 Using a Linear Model

——Driving ' Speed Point 5th Mean" | 95th [Systematic Random
Cycle (mph) | Estimate |Percentile® Percentile®| Error® Error*
LSP1 2.45 5.586 7.39 [ 9.556] 11.931 | -3.97 0.23
LSP2 3.64 3.763 5.179 | 6.794| 8.46 -3.031 0.24
LSP3 4.02 3.396 8.298 | 11.385f 14.731 -7.989 0.27
NYCC 7.1 1.914 2417 3.08 [ 3.769 -1.166 0.22

SCCI12 12.1 1.115 2.739 | 3.547| 4.372 -2.432 0.23

FTPBAG2| 6.1 0.833 0.813 | 0.904] 0.997 -0.071 0.10

SCC36 35.9 0.362 0.568 | 0.721 [ 0.887 -0.359 0.21

HEFET 48.4 0.263 0.545 | 0.649| 0.759 -0.386 0.16

HSP1 50.9 0.407 | 0.629 | 0.863 0.35
HSP2 57.6 0.694 | 0992 1.302 0.30
HSP3 64.3 1.084 | 2.337| 3.668 0.54

Table 14. Uncertainty in Predicted Mean CO Emission Factors for LDGYV of
Technology Group 12 Using a Linear Model.

rI-)riving Cycle §peed “Point 5th Mean® 95th §ystematic Random
(mph) | Estimate |Percentile® Percentile’ Error® Error*
LSPI 2.45 | 74.61 | 40.19 |61.03] 83.73 13.59 0.34
LSP2 3.64 49.84 28.92 |[48.78] 69.21 1.06 0.41
LSP3 4.02 44.85 30.33 |65.87| 98.54 -21.02 0.54
NYCC 7.10 24.71 39.26 [48.63| 58.68 -23.92 0.19
SCC12 12.10 13.84 19.67 [26.33] 32.90 -12.49 0.25
FTPBAG2 | 16.10 10.01 10.06 |[11.11 12.15 -1.10 0.09
SCC36 35.90 7.93 7.78 [10.53] 13.26 -2.60 0.26
HFET 48.40 5.59 5.93 7.88 9.88 -2.29 0.25
HSP1 50.90 6.88 7.77 8.70 0.11
HSP2 57.60 0.65 1.12 1.61 0.42
HSP3 64.30 0.95 1.67 2.33 ‘ 0.43
a = Probabilistic Results
b: Systematic Error = Point Estimate - Mean
c Random Error = Mean - 5th Percentile
Mean
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Table 15. Uncertainty in Predicted Mean NO, Emission Factors for LDGV
of Technology Group 12 Using a Linear Model

T)riving éycle SLpeed Point Sth Mean"{ 95th §ystematic Random
(mph) Estimate |Percentile® Percentile’] Error® Error*
LSP1 2.45 0.38 1.42 1.95 2.61 -1.56 0.27
LSP2 3.64 0.05 1.32 1.87 2.58 -1.83 0.30
LSP3 4.02 0.13 1.45 2.17 3.01 -2.03 0.33
NYCC 7.10 0.48 1.80 2.39 3.00 -1.91 0.25
SCC12 12.10 0.67 1.14 1.52 1.93 -0.85 0.25
FTPBAG 2| 16.10 0.74 0.60 0.78 0.96 -0.04 0.23
SCC36 35.90 0.77 0.87 1.16 1.46 -0.39 0.25
HFET 48.40 0.82 - 0.83 111 1.42 -0.30 0.25
HSP1 50.90 0.46 0.62 0.81 0.25
HSP2 57.60 0.20 0.38 0.61 0.48
HSP3 64.30 0.41 1.00 1.63 0.59
Table 16. Uncertainty in Predicted Mean HC Emission Factors for LDGV
of Technology Group 12 Using a Log-Linear Model
_-I')riving §peed Point Sth Mean®'l 95th | Systematic Random
Cycle (mph) Estimate | Percentile’ Percentile’|  Error® Error
LSPI 2.45 3.86 5.20 6.61 8.06 -2.75 0.21
LSP2 3.64 2.60 3.64 4.69 5.80 -2.09 0.22
LSP3 4.02 2.35 5.64 7.87 10.13 -5.52 0.28
NYCC 7.10 1.32 1.67 2.13 2.60 -0.81 0.22
SCCI2 12.10 0.77 1.93 2.44 3.02 -1.67 0.21
FTPBAG?2| 16.10 0.58 0.58 0.62 0.68 -0.05 0.08
SCC36 35.90 0.47 0.39 0.50 0.61 -0.03 0.21
HFET 48.40 0.35 0.38 0.45 0.52 -0.10 0.15
HSP1 50.90 0.28 0.43 0.59 0.35
HSP2 57.60 0.48 0.68 0.90 0.30
HSP3 64.30 0.77 1.61 2.52 0.52
a = Probabilistic Results
b: Systematic Error = Point Estimate - Mean

C

Random Error

= Mean - 5th Percentile

Mean
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Table 17. Uncertainty in Predicted Mean CO Emission Factors for LDGV

of Technology Group 12 Using a Log Linear Model.

T)riving Cycle] Speed Point 5th Mean® 95th §ystematic Random

(mph) Estimate | Percentile® Percentile*| Error® Error*

LSP1 2.45 49.63 26.79 |40.34| 55.19 9.29 0.34
LSP2 3.64 33.15 19.29 [32.60] 45.83 0.55 0.41
LSP3 4.02 29.83 1991 [43.73 65.74 -13.89 0.54
NYCC 7.10 16.43 26.14 13229 38.72 -15.86 0.19
SCC12 12.10 9.20 13.21 17.471 21.87 -8.27 0.24
FTPBAG2| 16.10 6.66 6.83 7.38 7.92 -0.73 0.08
SCC36 35.90 5.28 5.15 7.01 8.74 -1.73 0.27
HFET 48.40 3.72 4.00 5.25 6.52 -1.53 0.24
HSPI 50.90 4.63 5.17 5.71 0.10
HSP2 57.60 0.44 0.75 1.07 0.42
HSP3 64.30 0.64 1.10 1.54 0.42

Table 18. Uncertainty in Predicted Mean NO_, Emission Factors for LDGV
of Technology Group 12 Using a Log-Linear Model.

T)riving C-ycle §peed Point Sth Mean® 95th §ystematic Random
(mph) Estimate | Percentile’ Percentile’ |  Error® Error®
LSP1 2.45 0.35 1.28 1.79 2.43 -1.43 0.28
LSP2 3.64 0.04 1.18 1.72 2.39 -1.68 0.31
LSP3 4.02 0.12 1.31 1.98 2.79 -1.86 0.34
NYCC 7.10 0.44 1.61 2.20 2.79 -1.75 0.27
SCC12 12.10 0.62 1.03 1.40 1.80 -0.78 0.26
FIPBAG2| 16.10 0.68 0.54 0.71 0.90 -0.04 0.25
SCC36 35.90 0.71 0.78 1.07 1.36 -0.36 0.27
HFET 48.40 0.75 0.75 1.02 1.32 -0.27 0.27
HSPI 50.90 0.41 0.56 0.75 0.27
HSP2 57.60 0.18 0.35 0.56 0.48
HSP3 64.30 0.37 0.92 1.52 0.60
a = Probabilistic Results
b: Systematic Error = Point Estimate - Mean

C:

Random Error

= Mean - 5th Percentile

Mean
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Table 19. Uncertainty in Predicted Mean HC Emission Factors for LDGV of

Technology Group 8 Using a Linear Model.

Driving Cycle] Speed Point 5th Mean']| 95th |Systematic|] Random
- (mph) | Estimate {Percentile’ Percentile’| Error® Error® |

LSP1 2.45 2.91 491 6.71 8.57 -3.80 0.27
LSP2 3.64 2.02 5.41 7.06 8.86 -5.04 0.23
LSP3 4.02 1.84 9.00 [12.02] 15.18 -10.18 0.25
NYCC 7.10 1.11 1.36 2.05 2.77 -0.94 0.34
SCCI12 12.10 0.72 1.41 1.98 2.63 -1.26 0.29
FTPBAG2| 16.10 0.59 0.61 0.68 0.75 -0.09 0.10
SCC36 35.90 0.51 0.31 0.39 0.47 0.12 0.19
HFET 48.40 0.43 0.26 0.31 0.38 0.11 0.19
HSP1 50.90 0.58 0.81 1.05 0.28
HSP2 57.60 0.52 0.78 1.05 0.33
HSP3 64.30 0.46 0.78 1.12 0.42

Table 20. Uncertainty in Predicted Mean CO Emission Factors for LDGV
Group 8 Using a Linear Model.

of Technology

-I')riving C-ycle §peed Point Sth Mean*| 95th §ystematic Random
(mph) Estimate |Percentile® Percentile’| Error® Error®
LSP1 2.45 69.13 20.96 40.62| 61.66 28.51 0.48
LSP2 3.64 46.08 20.39 145.06| 70.07 1.03 0.55
LSP3 4.02 41.44 27.67 | 61.29] 92.32 -19.85 0.55
NYCC 7.10 22.69 29.83 |36.93| 44.48 -14.23 0.19
SCC12 12.10 12.59 12.12 } 16.06 | 19.99 -3.47 0.25
FIPBAG2| 16.10 9.02 9.04 9.87 10.73 -0.85 0.08
SCC36 35.90 7.09 6.18 7.50 8.82 -0.41 0.18
HFET 48.40 491 3.82 4.66 5.52 0.25 0.18
HSP1 50.90 3.27 5.06 6.91 0.35
HSP2 57.60 0.19 0.29 0.40 0.32
HSP3 64.30 0.15 0.30 0.45 0.50
a: = Probabilistic Results
b: Systematic Error = Point Estimate - Mean

C:

Random Error

= Mean - 5th Percentile

Mean
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Table 21. Uncertainty in Predicted Mean NO, Emission Factors for LDGV
of Technology Group 8 Using a Linear Model.
Driving Cycle ﬁSpeed Point 5th Mean'| 95 th |Systematic|] Random
(mph) | Estimate |Percentile Percentile’| Error’ Error®
LSP1 2.45 1.78 221 | 292] 3.78 .14 0.24
LSP2 3.64 1.46 2.14 2.83 3.66 -1.38 0.25
LSP3 4.02 1.39 2.40 3.36 4.45 -1.97 0.28
NYCC 7.10 1.13 1.65 2.11 2.62 -0.98 0.22
SCC12 12.10 0.99 1.41 2.33 3.43 -1.35 0.40
FTPBAG2| 16.10 0.94 0.74 0.92 1.10 0.02 0.20
SCC36 35.90 0.91 0.79 1.00 1.21 -0.09 0.21
HFET 48.40 0.88 0.64 0.81 1.00 0.07 0.21
HSPI 50.90 0.86 1.60 2.45 0.46
HSP2 57.60 0.09 0.23 0.38 0.60
HSP3 64.30 0.05 0.26 0.48 0.83

Table 22. Uncertainty in Predicted Mean HC Emission Factors for LDGV

of Technology Group 8 Using a Log-Linear Model

T)riving Eycle §peed Point 5th Mean®| 95th  |Systematic Random
(mph) Estimate | Percentile® Percentile’| Error® Error®
LSP1 2.45 2.40 408 | 5.55]| 7.0 314 0.26
LSP2 3.64 1.67 4.56 5.87 7.25 -4.20 0.22
LSP3 4.02 1.52 7.42 9.91 12.52 -8.39 0.25
NYCC 7.10 0.92 1.13 1.70 2.28 -0.78 0.33
SCC12 12.10 0.60 1.16 1.64 2.16 -1.04 0.29
FTPBAG2| 16.10 0.48 0.52 0.56 0.61 -0.08 0.08
SCC36 35.90 0.42 0.26 0.32 0.38 0.10 0.18
HFET 48.40 0.35 0.21 0.26 0.31 0.09 0.18
HSP1 50.90 0.49 0.67 0.87 0.27
HSP2 57.60 0.44 0.64 0.86 0.32
HSP3 64.30 0.39 0.65 0.93 0.40
a = Probabilistic Results
b: Systematic Error = Point Estimate - Mean

c:

Random Error

= Mean - 5th Percentile

Mean
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Table 23. Uncertainty in Predicted Mean CO Emission Factors for LDGV

of Technology Group 8 Using a Log Linear Model.

_Driving §peed “Point 5th Mean®| 95th §ystematic Random
Cycle (mph) Estimate | Percentile® Percentile*| Error® Error®
LSP1 2.45 57.20 7.5 |233.58| 51.02 23.63 0.48
LSP2 3.64 38.13 16.83 |37.221 57.95 0.92 0.55
LSP3 4.02 34.29 22.78 |50.69| 76.36 -16.40 0.55
NYCC 7.10 18.78 24.71 30.541 36.71 -11.76 0.19
SCC12 12.10 10.41 10.05 13.30 16.53 -2.89 0.24

FTPBAG 2] 16.10 7.46 7.51 8.17 8.83 -0.71 0.08
SCC36 35.90 5.87 5.13 6.20 7.29 -0.33 0.17
HFET 48.40 4.06 3.17 3.86 4.56 0.21 . 0.18
HSP1 50.90 2.71 4.18 5.69 0.35
HSP2 57.60 0.16 0.24 0.33 0.32
HSP3 64.30 0.12 0.25 0.37 0.50

Table 24. Uncertainty in Predicted Mean NO, Emission Factors for LDGV
of Technology Group 8 Using a Log-Linear Model

T)riving 5ycle Speed Point Sth Mean'| 95th | Systematic| Random
(mph) Estimate | Percentiie® Percentile*| Error® Error*
LSP1 2.45 1.61 1.95 2.64 3.46 -1.03 0.26
LSP2 3.64 1.32 1.89 2.56 3.35 -1.24 0.26
LSP3 4.02 1.26 2.14 3.03 4.08 -1.77 0.29
NYCC 7.10 1.02 1.46 1.91 2.39 -0.89 0.24
SCCI12 12.10 0.89 1.26 2.10 3.12 -1.21 0.40
FITPBAG2| - 16.10 0.84 0.65 0.83 1.01 0.01 0.22
SCC36 35.90 0.82 0.69 0.90 1.11 -0.08 0.23
HFET 48.40 0.79 0.57 0.73 0.91 0.06 0.23
HSP1 50.90 0.78 1.44 2.24 0.46
HSP2 57.60 0.08 0.20 0.35 0.59
HSP3 64.30 0.04 0.24 0.44 0.83
a: = Probabilistic Results
b: Systematic Error = Point Estimate - Mean

C:

Random Error

= Mean - 5th Percentile

Mean
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Table 25. Rank qurelation Coefficients for Uncertainty Model

Components
" Pollutant Driving @cle Model
Base Errorl Error2 SCF
Emission Rate Uncertainty
LSP1 0.43 0.22 0.35 0.90
LSP2 0.39 0.24 0.29 0.91
LSP3 0.36 0.18 0.29 0.94
NYCC 0.45 0.24 0.37 0.89
SCC12 0.40 0.21 0.33 0.91
HC FTP Bag 2 1.00 0.55 0.79 0.00
SCC 36 0.43 0.25 0.33 0.89
HFET 0.58 0.34 0.45 0.81
HSP1 0.26 0.10 0.24 0.96
HSP2 0.30 0.19 0.23 0.94
HSP3 0.14 0.10 0.11 0.98
LSP1 0.22 0.21 0.10 0.96
LSP2 0.23 0.16 0.18 0.97
LSP3 0.17 0.11 0.13 0.98
NYCC 0.43 0.28 0.32 0.87
SCC12 0.39 0.26 0.29 0.91
CO FTP Bag 2 1.00 0.69 0.71 0.00
SCC 36 0.35 0.30 0.20 0.92
HFET 0.40 0.29 0.27 0.92
HSP1 0.74 0.53 0.50 0.62
HSP2 0.20 0.17 0.11 0.97
HSP3 0.21 0.15 0.17 0.97
LSPI1 0.66 0.10 0.66 0.64
LSP2 0.70 0.08 0.70 0.69
LSP3 0.62 0.06 0.62 0.75
NYCC 0.92 0.09 0.91 0.35
SCCI12 0.91 0.09 0.91 0.39
NOx FTP Bag 2 1.00 0.11 1.00 0.00
SCC 36 0.88 0.13 0.88 0.38
HFET 0.87 0.12 0.87 0.47
HSP1 0.78 0.09 0.77 0.54
HSP2 0.37 0.05 0.36 0.89
HSP3 0.37 0.03 0.37 0.91
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Figure 12. Comparison of estimated FTP emissions of HC, CO and NO,
emissions with predictions of a Linear Base Emission Rate model for
LDGYV of Technology Group 12.
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Figure 13. Comparison of estimated FTP emissions of HC, CO and NO,
emissions with predictions of a Log-Linear Base Emission Rate model for

LDGYV of Technology Group 12.
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Figure 14. Comparison of estimated FTP emissions of HC, CO and NO,
emissions with predictions of a Linear Base Emission Rate model for
LDGYV of Technology Group 8.
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MobileSa result for
Average Speed of Cycle

Figure 17. Variation in the HC Speed Correction Factors for Different
Driving Cycles for LDGV of Technology Group 12
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Figure 18. Variation in the CO Speed Correction Factors for Different
Driving Cycles for LDGYVY of Technology Group 12
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Figure 19. Variation in the NO, Speed Correction Factors for Different
Driving Cycles for LDGV of Technology Group 12.
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" Figure 20. Variation in the HC Speed Correction Factors for Different
Driving Cycles for LDGV of Technology Group 8
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Figure 21. Variation in the CO Speed Correction Factors for Different
Driving Cycles for LDGV of Technology Group 8
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Figure 23. Comparison of the Residual HC Emissions from the Linear and
Log-linear Mileage Accumulation Models for LDGV of Technology Group
12.
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Figure 24. Comparison of the Residual CO Emissions from the Linear and
Log-linear Mileage Accumulation Models for LDGV of Technology Group
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Figure 25. Comparison of the Residual NO, Emissions from the Linear and
Log-linear Mileage Accumulation Models for LDGV of Technology Group
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Figure 26. Comparison of the Residual HC Emissions from the Linear and
Log-linear Mileage Accumulation Models for LDGV of Technology Group
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Figure 27. Comparison of the Residual CO Emissions from the Linear and
Log-Linear Mileage Accumulation Models for LDGV of Technology Group
8.
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Figure 28. Comparison of the Residual NO, Emissions from the Linear and
Log-Linear Mileage Accumulation Models for LDGV of Technology Group
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Figure 32. Comparison of Base Emission Rates with and without IM240 to
FTP Residual Error using a Log-Linear Model for LDGV of Technology
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Figure 35. Predicted Variability in the HC Emission Factors for Different
Driving Cycles for LDGYV of Technology Group 8 Using a Linear Model.
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Figure 36. Predicted Variability in the HC Emission Factors for Different
Driving Cycles for LDGV of Technology Group 8 Using a Log-Linear
Model.
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Figure 37. Predicted Variability in the CO Emission Factors for Different
Driving Cycles for LDGV of Technology Group 12 Using a Linear Model.
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Figure 38. Predicted Variability in the CO Emission Factors for Different
Driving Cycles for LDGV of Technology Group 12 Using a Log-Linear

Model.
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Figure 39. Predicted Variability in the CO Emission Factors for Different
Driving Cycles for LDGY of Technology Group 8 Using a Linear Model.
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Figure 40. Predicted Variability in the CO Emission Factors for Different
Driving Cycles for LDGV of Technology Group 8 Using a Log-Linear
Model
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Figure 41. Predicted Variability in the NO_ Emission Factors for Different
Driving Cycles for LDGYV of Technology Group 12 Using a Linear Model.
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Figure 42. Predicted Variability in the NO, Emission Factors for Different

Driving Cycles for LDGV of Technology Group 12 Using a Log-Linear
Model
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. Figure 43. Predicted Variability in the NO, Emission Factors for Different
Driving Cycles for LDGV of Technology Group 8 Using a Linear Model.
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Model.
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9.0 RESULTS, CONCLUSIONS AND RECOMMENDATIONS

This Chapter provides a summary of all the results and conclusions based on the
analyses carried out in this report. To improve emission estimates and develop more
realistic emission inventories, recommendations have been made to modify the current

modeling approach.

9.1 Results and Conclusions

The results of the analyses carried out here provide answers to the questions raised
in Chapter 1. The variability analyses shows that the HC and CO emissions vary by up to
three orders-of-magnitude from one vehicle to another, while NO, emissions vary by up to
two orders-of-magnitude. The results of the uncertainty analysis are summarized in Table
26. The summary indicates that in most cases, the point estimate is underestimated.
Therefore, in-order to come up with a probabilistic mean of emissions, an analyst can
multiply the point estimate obtained by using a deterministic model by the corresponding
factor of underestimation shown in Table 26. The random error on the mean describes a 90
percent confidence interval range. That is to say that the fleet average emissions obtained
after adjusting for systematic error would have a 90 percent probability of being enclosed
by the mean plus or minus the random error shown in Table 26. For example, the point
estimate for HC emissions of TG12 for the LSP1 cycle is 2.9 g/mi. Adjusting this for
systematic error by a factor of 1.5, the fleet average would be reported as 4.35 g/mi.
Furthermore, the random error on the mean is 25 percent of 4.35, which is equal to 1.08

g/mi. Therefore, an analyst can be 90 percent confident that the mean HC emissions for

TG12 and the LSP1 cycle would be 4.35 + 1.08 g/mi.
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Confidence interval analysis is an important constituent of the uncertainty analysis.
Faced with two alternate decisions to achieve the same emissions reduction, an informed
decision maker needs to know the confidence intervals around the predicted value in order
to know whether the alternatives actually differ. Furthermore, by characterizing
uncertainties, decision makers can identify the key sources of uncertainty which, if
reduced, might lead to different decisions and, therefore, prioritize additional data collection

accordingly.

Uncertainty associated with the use of existing emission factor models should be
quantified by revisiting the data used to develop each numerical algorithm in the models. In
this report, the BERs and SCF data were analyzed. Other correction factor data such as the
temperature correction factor and the operating mode correction factors should be analyzed.
The mean emission factor uncertainty analysis shows that the means emissions for the three
low speed cycles are not much different. Also as seen from the correlation tables in
Appendix B, the three low speed cycles are highly correlated. Therefore, the use of three
low speed cycles in the Mobile5Sa model is redundant. In most cases, the technology
specific point estimate for SCF is not bounded by the uncertainty in the mean SCR
distributions. This implies that the SCF model in MobileSa needs to be re-analyzed. This is
also justified by the rank correlations for uncertainty in the means shown by Table 25. The
rank correlations describe the contributions of each model component leading to uncertainty
in the predicted emissions. As seen from Table 25, the SCF contribution has a large
contribution to the uncertainty in the model predictions in most cases. Further analyses on
the distributions of the standard errors for emissions across different driving cycles can
provide additional insight in to the uncertainties of model predictions at speeds other than
the average speeds of the driving cycles. Once these uncertainties are quantified, they can

be incorporated into policy analyses.
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Potentially significant biases have been identified in the emission factors predicted
by Mobile5a model. These findings are based upon analyses of only two of the technology
groups for LDGV. The source of the bias is difficult to quantify, because insufficient
documentation is available regarding the basis of the technology-specific point-estimates.
One source of bias is the use of linear regression models in situations where a log-linear

model would have been more appropriate.

Results from previous studies which examined the speed correction factors in detail
(Guensler, 1993 ; NCHRP, 1995) have also indicated that application of speed correction
factors and average speed modeling to analysis of emissions will yield highly uncertain

results.

Because of the potential large amount of uncertainty associated with the emission
factor estimates from Mobile5a, the numerical precision of the model should be viewed
with caution. The findings in this study suggest that the precision of the model is not better
than plus or minus 20 percent. The limitations of the precision of the model have to do
with the large amount of inter-vehicle variability in emissions, which translates into
uncertainty regarding fleet average emissions. This is a fundamental aspect of vehicle
emissions estimation. The level of uncertainty can be reduced by collecting more data. The
estimates of uncertainty can be used to help determine where data collection would be most
beneficial, based upon the technology groups, pollutants, and driving cycles which are the
most critical in emission inventory development or other environmental decision making

contexts.

The accuracy of the model is more difficult to assess. However, our findings

suggest that there may be biases in the model predictions. If so, these could have

significant implications for development of emissions inventories and for various
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regulatory compliance analyses. The recommendations described below could help make

the model predictions more realistic.

Our analysis has focused upon a trip-based emission factor model. It is likely that
there are limits to the precision of alternative methods for emission factor estimation, such
as modal emissions models. However, there are currently no estimates of uncertainty in

these other methods available for comparison.

9.2 Recommendations

There are significant sources of uncertainty in average highway vehicle emission
factor estimates. Many of these sources of uncertainty, such as variability in emissions
from one vehicle to another and limited data set sizes, can and should be quantified.
Knowledge of uncertainty enables decision makers to evaluate the degree of confidence that
should be placed in the emission estimates. Furthermore, knowledge regarding key

sources of uncertainty can be used to prioritize data collection.

The Mobile5a model is structured such that it is possible to misuse the data
underlying the model by allowing the user to interpolate between emission estimates of
different driving cycles driving cycles. Since the interpolations are done only on the basis
of average driving cycle speed, whereas emissions are sensitive to the overall speed-
acceleration profile of the driving cycle, this is actually a form of extrapolation. An
additional concern is that the model is commonly used to predict on-road, link based
emissions. However, Mobile5a is based on complete trip based driving cycles and use of
the model to predict link-based emissions, which represent only segments of a complete

trip, is inappropriate.

154



Instead of interpolating between driving cycles, or using a link-based approach to
emission inventory development, we recommend the development of mixtures of diving
cycles to better represent observed speed variations on transportation networks. We have
illustrated an approach for developing mixture distributions of driving cycle emissions data.
The uncertainty and variability analysis of the BER and SCF in Mobile5a have provided
greater insights as to the appropriateness of the model algorithms and the model structure,
as well as regarding the precision and accuracy of the model for the technology groups,
pollutants, and driving cycles that we evaluated. The following recommendations can help

address the limitations of the current model.

1. The current linear model for BERs in Mobile5a should be replaced by an
appropriate log-linear model. As shown in Chapter 8, the HC and CO emissions
vary by more than an order-of-magnitude. Therefore a log-linear model would be
more appropirate model structure for the BER model.

2. The SCF equation in Mobile5a should be reanalyzed and replaced with a new more
appropriate equation. The SCF module in Mobile5a predicts the emissions to be
sensitive to speed at low speeds. However, the analysis in Chapter 8 shows that
the emissions across the three low speed cycle do not vary significantly for the two
technology groups that were studied. Also, in many cases, the point estimates for
SCFs are not within by the 95 percent probability range for the mean of the
probability distributions. This indicates that the current SCF module in Mobile5a

does not adequately represent the driving cycle data in these cases.

3. Vehicles need to be tested on additional driving cycles to account for modal

behaviors. However, we have shown that some of the driving cycles, such as
LSP1, LSP2, and LSP3 provide redundant data. Thus, in some cases, it is
possible to reduce the number of cycles used for testing without losing any

significant information.

155



4. The Mobile5a model should be modified so as to enable the user to input data such

as observed on-road variations in speed. Such data can be collected with traffic

detectors such as double loop detectors, video-based systems, or pneumatic tube

measurement systems such as Auto Poll. The on-road speed inputs should be used

to generate mixture distributions of speeds and mixture distributions of emissions

from each driving cycle as described in Chapter 7. The mean obtained from the

mixture distribution for emissions can then be compared to the link-based average

fleet emissions.

Recommendations | and 2 would account for model structure uncertainty by

considering a different model structure. Recommendation 3 would provide additionai and

appropriate data for addressing model details. Recommendation 4 would make the model

predictions more realistic in comparison to on-road measurements. This will enable the

new emission factor model to be validated by on-road measurements such as tunnel

studies.

In conclusion, a new model for emission factors based on the above

recommendations would help make the emission inventories better and more realistic.

Table 26. Results of the Mean Emissions Uncertainty Analysis

Pollutant Cycle Speed [Random Error Systematic Error
Low 25 percent Underestimation by a factor of 1.5 to 3
HC Medium 20 percent Underestimation by a factor of up to 3
High 40 percent
Low 40 percent Underestimation by a factor of upto 2
CO Medium 20 percent Underestimation by a factor of upto 2.5
High 30 percent
Low 25 percent Underestimation by a factor of 2 to 4
NOx Medium 30 percent Underestimation by a factor of about 2
High 55 percent
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APPENDIX A: Speed Time Profiles of Non-Standard Emissions Testing

Driving Cycles
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Appendix B: The SCF Data for Technology Group 12 and Technology
Group 8 andthe Correlation Coefficients of Emissions at Different Driving
Cycles

Table 27. Emissions for LDGV of Technology Group 12 Across Different

Driving Cycles

Poll. Driving Average Min | Median| Mean | 95th % Max No. of
Cycle Cycle Speed| (g/mi) | (g/mi) | (g/mi) C.I. (g/mi) | Vehicles
Tested
LSPI 2.50 0.05 0.58 1.17 0.35 13.18 91.00
LSP2 3.60 0.05 0.43 0.87 0.30 12.11 91.00
LSP3 4.00 0.07 0.55 ©1.44 0.64 27.89 91.00
NYCC 7.10 0.02 0.23 0.39 0.11 533 111.00
SCCi2 12.10 0.01 0.23 0.45 0.11 347 111.00
HC FTP Bag 2 16.10 0.02 0.07 0.17 0.08 4.43 111.00
SCC36 36.00 0.00 0.06 0.09 0.02 0.67 111.00
HFET 48.00 0.00 0.05 0.08 0.02 0.89 111.00
HSPI 50.00 0.03 0.05 0.06 0.02 0.11 12.00
HSP2 57.00 0.01 0.07 0.07 0.02 0.18 26.00
HSP3 64.00 0.01 0.09 0.14 0.07 0.85 26.00
LSP1 2.50 0.00 4.30 9.34 4.54 202.80 91.00
LSP2 3.60 0.00 3.00 7.48 4.16 188.30 91.00
LSP3 4.00 0.00 2.10 8.47 6.74 313.10 91.00
NYCC 7.10 0.00 4.00 8.31 2.18 82.60 111.00
SCC12 12.10 0.00 2.60 4.49 1.27 51.80 111.00
CO FTP Bag 2 16.10 0.00 1.70 3.02 1.44 77.20 111.00
SCC36 36.00 0.00 1.00 1.69 0.65 30.60 111.00
HFET 48.00 0.00 0.60 1.01 0.34 17.40 111.00
HSPI 50.00 0.09 0.54 0.58 0.17 1.19 12.00
HSP2 57.00 0.01 0.07 0.07 0.02 0.18 26.00
HSP3 64.00 0.01 0.09 0.14 0.07 0.85 26.00
LSPI1 2.50 0.01 0.46 0.52 0.07 1.74 91.00
LSP2 3.60 0.01 0.40 0.47 0.06 1.69 91.00
LSP3 4.00 0.00 0.38 0.45 0.07 1.75 91.00
NYCC 7.10 0.00 0.73 0.78 0.09 2.60 111.00
SCC12 12.10 0.01 0.42 0.59 0.10 342 111.00
NOx | FTPBag?2 16.10 0.01 0.27 0.31 0.05 1.76 111.00
SCC36 36.00 0.03 0.34 0.38 0.05 2.14 111.00
HFET 48.00 0.02 0.30 0.37 0.06 2.38 111.00
HSPI 50.00 0.03 0.29 0.26 0.10 0.55 12.00
HSP2 57.00 0.01 0.07 0.07 0.02 0.18 26.00
HSP3 64.00 0.01 0.09 0.14 0.07 0.85 26.00
171




Table 28. Emissions for LDGV of Technology Group 8 Across Different
Driving Cycles

Pollutant| Driving | Average Cycle{ Min | Median | Mean} 95th % | Max | No. of
Cycle Speed (mi/hr) |(g/mi) (gm/mi)|(g/mi)] C.I. |[(g/mi)|Vehicles
Tested
LSPI 2.50 0.22 0.69 1.62 1.06 7.49 14.00
LSP2 3.60 0.19 0.70 1.73 1.18 8.76 14.00
LSP3 4.00 0.25 1.27 2.74 1.65 11.78 14.00
NYCC 7.10 0.06 0.33 0.50 0.19 3.21 35.00
SCC12 12.10 0.07 0.29 0.48 0.17 2.19 35.00
HC FTP Bag 2 16.10 0.04 0.13 0.16 0.04 0.69 35.00
SCC36 36.00 0.02 0.08 0.09 0.02 0.33 35.00
HFET 48.00 0.02 0.06 0.08 0.02 0.23 35.00
HSPI1 50.00 0.10 0.14 0.14 0.04 0.19 4.00
HSP2 57.00 0.09 0.15 0.17 0.06 0.39 8.00
HSP3 64.00 0.08 0.12 0.18 0.09 0.49 8.00
LSPI 2.50 0.80 4.35 1556 1493 |113.90 14.00
LSP2 3.60 0.60 3.70 18.47| 18.57 |140.70 14.00
LSP3 4.00 0.40 4.15 25.38 | 23.86 |173.30 14.00
NYCC 7.10 1.30 8.50 11.52 4.09 77.20 35.00
SCC12 12.10 0.30 3.60 5.33 2.28 42.80 35.00
co FTP Bag 2 16.10 0.30 2.70 344 1.18 22.30 35.00
SCC36 36.00 0.50 1.70 1.89 0.29 4.30 35.00
HFET 48.00 0.40 1.10 1.24 0.21 3.60 35.00
HSPI 50.00 0.66 0.81 0.83 0.17 1.05 4.00
HSP2 57.00 0.03 0.05 0.06 0.02 0.13 8.00
HSP3 64.00 0.03 0.04 0.06 0.03 0.16 8.00
LSP1 2.50 0.58 0.89 1.05 0.27 2.38 14.00
LSP2 3.60 0.28 0.84 1.02 0.24 1.84 14.00
LSP3 4.00 0.18 1.06 1.19 0.35 2.65 14.00
NYCC 7.10 0.10 0.71 0.70 0.09 1.30 35.00
SCC12 12.10 0.10 0.55 0.77 0.23 3.32 35.00
NOx FTP Bag 2 16.10 0.06 0.32 0.34 0.05 0.66 35.00
SCC36 36.00 0.06 0.31 0.35 0.06 0.76 35.00
HFET 48.00 0.07 0.24 0.29 0.05 0.70 35.00
HSPI 50.00 0.24 0.52 0.59 0.32 1.09 4.00
HSP2 57.00 0.03 0.05 0.06 0.02 0.13 8.00
HSP3 64.00 0.03 0.04 0.06 0.03 0.16 8.00
172



Table 29. Correlation Coefficients for HC Emissions at Different Drlvmg
Cycles for Technology Group 12.°

Cycle Name | LSP1 | LSP2 | LSP3 [NYCC| SCCI2| FTP | SCC36| HFET | HSP! | HSP2 | HSP3
Bag 2

Cycle Speed | 2.50 | 3.60 | 4.00 | 7.10 | 12.10 | 16.10 | 36.00 { 48.00 | 50.00 | 57.00 { 64.00
2.50 1.00

3.60 0.93 1.00

4.00 0.88 | 0.97 1.00

7.10 0.38 | 0.40 | 0.31 1.00

12.10 041 0.25 | 0.19 019 1.00

16.10 0.31 023 | 0.16 | 0.22 | 0.64 1.00

36.00 039 | 037 ] 026 | 0.59 | 0.56 0.67 1.00

48.00 028 | 035 | 023 | 022 | 0.38 0.56 0.63 1.00

50.00 -0.36 0.57 0.72 1.00

57.00 -0.39 0.41 0.87 0.74 1.00

64.00 -0.60 | -0.61 049 | -0.14 | 0.33 1.00

Table 30. Correlation Coefficients for CO Emissions at Different Driving
Cycles for Technology Group 12°

Cycle Name | LSPI | LSP2 | LSP3 | NYCC| SCCi2{ FTP [SCC36| HFET | HSP1 | HSP2 | HSP3
Bag 2

Cycle Speed | 2.50 | 3.60 | 4.00 | 7.10 | 12.10 l6.g10 36.00 | 48.00 | 50.00 | 57.00 | 64.00
2.50 1.00

3.60 0.99 1.00

4.00 096 | 097 | 1.00

7.10 030 | 0.28 { 0.16 | 1.00

12.10 0.22 | 0.16 | 0.07 | 0.32 1.00

16.10 0.19 | 0.14 | 0.08 | 0.28 0.81 1.00

36.00 022 | 023 | 0.11 | 0.58 040 | 040 1.00

48.00 0.08 | 0.08 | 0.04 | 0.21 042 | 0.51 047 1.00

50.00 0.54 | 0.63 0.80 1.00

57.00 -049 | -042 | 0.03 | 0.09 1.00
64.00 0.32 | 0.08 0.67 | 0.38 | 0.33 1.00

For LSP1, LSP2, and LSP3, 91 vehicles were tested.

For NYCC, SCC12, FTP Bag 2, SCC36 and HFET, 111 vehicles were tested, of which 91 were
also tested on the low speed cycles.
The correlation coefficients for the high speed cycles are for a combination of vehicles of

Technology Groups 12 and 13.

12 vehicles were tested for the HSP1 cycle while 26 vehicles were tested for the HSP2 and HSP3
cycles. The same vehicles were also tested on the FTP Bag 2, SCC36 and HFET cycles.
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Table 31 Correlation' Coefficients for NO, Emissions at Different Driving
Cycles for Technology Group 12°.

Cycle Name | LSP1 | LSP2 | LSP3 {NYCC| SCC12| FTP |SCC36| HFET | HSP1 | HSP2 | HSP3
Bag 2

Cycle Speed | 2.50 { 3.60 | 4.00 | 7.10 | 12.10 ] 16.10 | 36.00 | 48.00 | 50.00 } 57.00 | 64.00

2.50 1.00

3.60 0.87 | 1.00

4.00 0.71 | 0.84 1.00

7.10 0.63 | 0.60 | 041 1.00

12.10 0.63 | 053 | 035 | 0.68 1.00

16.10 0.57 | 051 | 029 | 0.79 | 0.80 1.00

36.00 -| 049 | 048 | 026 | 0.71 | 0.71 0.82 1.00

48.00 039 | 036 | 0.17 | 054 | 0.64 0.71 091 1.00

50.00 0.94 0.94 0.98 1.00

57.00 -0.58 0.55 -0.68 | -0.74 1.00

64.00 -0.59 | -0.65 | -0.65 | -0.68 0.33 1.00
b: For LSP1, LSP2, and LSP3, 91 vehicles were tested.

For NYCC, SCC12, FTP Bag 2, SCC36 and HFET, [11 vehicles were tested, of which 91 were
also tested on the low speed cycles.

The correlation coefficients for the high speed cycles are for a combination of vehicles of
Technology Groups 12 and 13.

12 vehicles were tested for the HSP1 cycle while 26 vehicles were tested for the HSP2 and HSP3
cycles. The same vehicles were also tested on the FTP Bag 2, SCC36 and HFET cycles.
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Table 32. Correlation Coefficients for HC Emissions at Different Driving

Cycles for Technology Group 8.

Cycle Name | LSPI1 | LSP2 | LSP3 | NYCC| SCC12} FTP |SCC36| HFET | HSP1 | HSP2 | HSP3
Bag 2

Cycle Speed | 2.50 | 3.60 | 4.00 | 7.10 | 12.10 16%10 36.00 | 48.00 | 50.00 | 57.00 | 64.00
2.50 1.00

3.60 0.99 1.00

4.00 0.99 { 099 | 1.00

7.10 096 | 093 094 | 1.00

12.10 092 | 090 094 | 085 1.00

16.10 095 | 097 | 094 | 087 | 0.85 1.00

36.00 0.71 078 | 0.69 | 059 | 0.57 | 0.86 1.00

48.00 0.67 | 073 ] 063 | 054 | 049 | 0.82 | 098 1.00

50.00 -0.10 | 0.93 0.75 1.00

57.00 0.01 049 | 0.59 | 045 1.00

64.00 0.88 | 042 054 | 0.12 | -0.26 | 1.00

Table 33. Correlation

Coefficients for CO Emissions at Different Driving

Cycles for Technology Group 8¢
Cycle Name | LSP1 | LSP2 | LSP3 | NYCC| SCCI12} FTP {SCC36| HFET | HSP! | HSP2 | HSP3
Bag 2
Cycle Speed | 2.50 3.60 4.00 7.10 12.10 16%10 36.00 | 48.00 | 50.00 | 57.00 | 64.00
2.50 1.00
3.60 0.99 1.00
4.00 0.98 0.98 1.00
7.10 0.56 0.56 0.68 1.00
12.10 0.70 0.69 0.74 0.83 1.00
16.10 0.75 0.73 0.80 0.82 0.87 1.00
36.00 0.18 0.17 0.17 0.24 0.30 0.40 1.00
48.00 0.37 0351 034 | 022 0.30 0.63 0.62 1.00
50.00 0.18 | -0.74 0.85 1.00
57.00 0.75 0.42 -0.24 0.29 1.00
64.00 041 -0.41 0.19 0.16 v-0.26 1.00
d: For LSP1, LSP2, and LSP3, 14 vehicles were tested.

For NYCC, SCC12, FTP Bag 2, SCC36 and HFET, 35 vehicles were tested, of which 14 were

also tested on the low speed cycles.
The correlation coefficients for the high speed cycles are for a combination of vehicles of

Technology Groups 8 and 9.

4 vehicles were tested for the HSP1 cycle while 8 vehicles were tested for the HSP2 and HSP3

cycles. The same vehicles were also tested on the FTP Bag 2, SCC36 and HFET cycles.
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Table 34. Correlation Coefficients for NO, Emissions at Different Driving
Cycles for Technology Group 8°.

Cycle Name | LSP1 | LSP2 | LSP3 | NYCC |} SCC12| FTP |SCC36| HFET | HSP1 | HSP2 | HSP3
Bag 2
Cycle Speed | 2.50 3.60 |.4.00 | 7.10 { 12.10 | 16.10 | 36.00 | 48.00 | 50.00 { 57.00 | 64.00
2.50 1.00
3.60 0.84 1.00
4.00 0.56 0.88 1.00
7.10 0.04 0.45 | 0.59 1.00
12.10 0.33 0.38 | 0.25 | 0.61 1.00
16.10 0.52 0.71 0.64 | 0.63 0.64 1.00
36.00 0.34 0.60 | 0.56 | 0.79 0.48 0.67 1.00
48.00 043 0.57 | 046 | 0.61 0.30 0.56 0.91 1.00
50.00 - 0.93 0.98 1.00 1.00
57.00 -0.16 | -0.07 | -0.01 | -0.04 | 1.00
64.00 -0.51 | -0.64 | -0.79 | -0.78 | -0.26 1.00
d: For LSPI, LSP2, and LSP3, 14 vehicles were tested.

For NYCC, SCC12, FTP Bag 2, SCC36 and HFET 35 vehicles were tested, of Wthh 14 were

also tested on the low speed cycles.
The correlation coefficients for the high speed cycles are for a combination of vehicles of
Technology Groups 8 and 9.

4 vehicles were tested for the HSP1 cycle while 12 vehicles were tested for the HSP2 and HSP3

cycles. The same vehicles were also tested on the FTP Bag 2, SCC36 and HFET cycles.
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APPENDIX C: An Overview of Automobile Emissions

C.1 Sources of Automobile Emissions

Emissions from vehicles with conventional, gasoline powered, internal combustion
engines arise from three sources: the crankcase, the fuel system and the exhaust. The
crankcase and fuel system are sources of hydrocarbons, whereas the exhaust contains

hydrocarbons, carbon monoxide and nitrogen oxides (Horrowitz, 1982).

To understand the formation and control of emissions it is necessary to have a
rudimentary understanding of the operation of the internal combustion engines. In
conventional, gasoline powered engines, the motion of the pistons is transmitted through
connecting rods to a crankshaft and ultimately to the wheels. Each piston operates in a four
stroke cycle consisting of an intake stroke, a compression stroke, a power stroke, and an
exhaust stroke. In the intake stroke, the piston moves downward in the cylinder. This
causes a mixture of air and fuel to be drawn in to the cylinder through the open intake
valve. The air and fuel are mixed together in the carburetor, which controls the air to fuel
(A/F) ratio. At the bottom of the intake stroke, the intake valve closes and the piston begins
to move upward in the cylinder, compressing the mixture of air and fuel. This is the
compression stroke. An electrical current causes the spark plug to create a spark in the
cylinder near the top of the compression stroke. The spark ignites the compressed air-fuel
mixture, and the expansion of the burning gases forces the piston to move downward,
thereby delivering power to the crankshaft. Thisv is the power stroke. At the end of the
power stroke the exhaust valve opens, and the piston begins to rise in the cylinder, forcing
the combustion products out through the exhaust valve. Following this exhaust stroke, the

four stroke engine repeats itself (Horowitz, 1982).
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The exhaust emissions account for all of the CO and NO, emissions and 60 percent
of HC emissions in automobiles without emission controls. The organic constituents of the
exhaust include aldehydes and traces of alcohols and other products of partial oxidation of
hydrocarbons, in addition to puré hydrocarbons. If the fuel supplied to the cylinders
burned completely, it would be oxidized to carbon dioxide CO, and water. Then there
would be no exhaust HC or CO emissions. However, as described above, an automobile
engine operation involves a very rapid batch-burning process. After ignition, the flame
progresses in the combustion chamber, but fails to propogate in the vicinities of the
cylinder walls. This effect, known as wall quenching, is caused partly by the chemical
reactions that occur in the layers of the A/F mixture adjacent to the walls and partly by
cooling of these layers by the wall. As a result of the wall quenching, the A/F mixture near
the wall does burn completely. This process leaves a layer of unburned hydrocarbons next
to the wall, a portion of which subsequently mixes with the burned charge and escapes
with the exhaust gas. This can occur during transient conditions such as warm up, when
the fuel entering the cylinders may be inadequately atomized and mixed with air, or during
idle or deceleration, when the cylinders contain excessive quantities of residual exhaust gas
from previous piston cycles. Incomplete combustion can also be caused by engine
malfunctions or maladnustments. For example, if an ignition system malfunction prevents
one or more spark plugs from producing a spark at a proper time or if a carburetor
malfunction causes the A/F to be too high or too low, the combustion will be incomplete

and HC emissions will be excessive (Horrowitz, 1982).
CO is formed when the carbon containing substances such as gasoline are burned

with an inadequate supply of oxygen. In an internal comnustion engine, low A/F ratios

tend to produce high CO emissions, where as CO emissions are lower at high A/F ratios.
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The exhaust emissions rates are sensitive to a variety of the engine adjustments and
design parameters, including Air/fuel (A/F) ratio, spark timing, compression ratio etc. The
AJF ratio is an important variable in determining emissions. In actual operations the A/F
ratio is not the optimum theoretical mixture since the flow is not homogeneously distributed
throughout the combustion chamber. Thus combustion is not complete, particularly when
the mixture is fuel rich. As a result the exhaust gas emitted from the tailpipe consists of a
complex mixture of CO and unburned or partially burned HC’s, NO,, various particulate

matter and sulfur compounds.

The engine emits different amounts of pollutants depending upon the driving mode.
Air rich mixtures will tend to produce minimal CO but will produce considerable NO. The
combustion temperatures will also affect the pollutant formation. At low temperatures CO
and NO concentrations will be lower but the concentration of unburned HC’s in the exhaust

will increase ( Johnson,1988).

During the compression and the power strokes, some of the gases in the cylinders
escape past the pistons and in to the crankcase. This escape of gases is a source of
crankcase, or blowby, emissions. The crankcase is the space underneath the pistons that
contains the connecting rods and the crankshaft, among other engine parts. The escaping
gases consist mostly of unburned A/F mixture. Since gasoline is largely a mixture of HCs,
these emissions have high HC concentrations. The crankcase emissions account for

roughly 20 precent of the HC emissions of uncontrolled automobiles (Horowitz, 1982).

In addition to the engine, the other source of emissions are from the fuel systems.
The emissions from the fuel tank are due to evaporation of the fuel when the automobile is

sitting after use (hot soak) or when the tank gets heated during the day or during refueling

" operations. The heating on warm days causes the fuel and the fuel vapors in the tank to
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expand. Some of these vapors spill out of the tank into the air. The resulting emissions are
called diurnal emissions and are independent of any use that the vehicle receives during a
day. In refueling, the entering fuel displaces the gasoline vapor that are in the fuel tank and
forces them in to the air. Emissions from the carburetor occur mainly while the engine is
hot after having been turned off at the end of a trip. The fuel left in the carburetor at this
time is hot and the volatile costituents evaporate rapidly. These emissions are called hot
soak emissions. The evaporative emissions from the fuel tank and the carburetor consist
mainly of HC’s and account for roughly 20 percent of HC emissions from automobiles

without emission controls.

An obvious way to reduce CO emissions is to increase the A/F ratic. The NO
‘emissions are also governed by the availability of oxygen for the reaction and high
temperatures to promote the reaction. The time for NO to form is longer than the time
available so that equilibrium at peak temperature conditions is not obtained. The maximum
NO levels are formed with an A/F ratio about 10 percent above stoichiometric ratio. The
stoichiometric ratio of 14.7:1 is necessary in the control technology using a three way
catalyst since the A/F ratio must be within 0.05 of the stoichiometric ratio to achieve high
HC, CO and NO, control efficiencies. However, the uncontrolled concentrations of all
these pollutants are not minimum at the optimum A/F ratio. When CO and HC
concentrations are a minimum at an A/F ratio of 16:1, NO, production is maximum. More
air than this reduces the peak temperature, since the excess air must be heated for energy to
be released during combustion. Hence the NO concentration falls off with additional
excess oxygen. This is the lean burn region where A/F ratio exceeds 17.5 :1. Lean burn
regions are potential sources of improved fuel economy although they give rise to increased
HC concentration due to low flame temperatures. Therefore they would require adequate

emission control with oxidation catalysts (Johnson, 1988).
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C.2 Exhaust Emission Controls

Since 1960 automobile emissions ha\;e been significantly lowered by improved
design of the engine and fuel systems. These reductions were a result of a A/F ratio
control, cylinder to cylinder distribution of the air and fuel, choke operations, combustion
chamber designs, fuel injection, exhaust gas recirculation (EGR), ignition systems, spark
and valve timings along with the addition of emission control devices such as catalytic
converters, evaporative emission storage canisters, purge control valave, fuel filler neck

restricter etc.

The first emission control device was the positive crankcase ventilation (PCV)
which draws clean air through the crankcase in to the inlet manifold, providing a path for
the blowby gases to be drawn in to the cylinders and be burnt. Engine modifications
include eliminaﬁon of nooks and crevices in the combustion chamber that inhibited
complete combustion, changes in the design of the inlet manifolds, cylinder head
assemblies and addition of the air injection reactor (AIR), which pumps air in to the hot
engine to prorhote the oxidation of unburned fuel. Exhaust gas recirculation, in which a
small amount of the hot exhaust gases are allowed to flow in to the inlet manifold to reduce
combustion temperature, allowed a reduction in NO, concentrations in the tailpipe
emissions. Retarding the spark decreased the wall quench effect and raised the exhaust gas
temperature so the completion of hydrocarbon reaction in the exhaust could occur. This
also reduced NO emissions significantly. Closed loop fuel control allowed the operation of

the engine at stoichiometric ratio.
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C.3 Catalyst Control Systems

Two additional approaches, namely the three way catalyst and the dual catalyst
systems, have gained application with the microprocessor control systems to provide
necessary control. The three way catalytic convertor yeilds optimal performance in
reducing exhaust emissions with the engine operating at stoichiometric ratio. Therefore,
the use of a three way catalytic convertor with a closed loop fuel control in which an
oxygen sensor is used in conjunction with the microprocessor makes this technology more
effective. In a dual catalyst, two catalysts are used in series: a three way catalyst followed
by an oxidizing catalyst to operate more efficiently. Air is injected in to the exhaust gas
between the two catalysts to provide the oxygen necessary for the oxidizing catalyst to

operate efficiently.

Precise A/F ratio control is required for the efficient functioning of the catalyst
control systems. Air supplied to the oxidised catalyst can be diverted to the exhaust ports.
This facilitates the addition of oxygen to the combustion products of a rich start-up mixture
for faster catalyst light-off. It also helps to achieve higher HC and CO control efficiencies
in the three way catalyst. The dual bed converter is more complex than the single bed three
way catalyst, because it requires an extensive air management system. A closed loop
control, which has a feedback control of the fuel delivery based upon the oxygen level in
the exhaust, is used to maintain the A/F ratio control. The key element in the closed loop
system is the oxygen sensor which is inserted in the exhaust pipe ahead of the catalyst. It
measures the exhaust oxygen concentration and signals an electric controller to adjust the

fuel rate continuously so that the mixture is maintained at stoichiometric ratio.

182



C.4 Current Approaches and Future Trends in Emission Controls

The current trend is to use heated oxygen sensors to initiate closed loop operations
faster and to maintain them during long idling periods. The heated sensor also deteriorates
less with extended mileage. The three-way catalyst system can be modified to reduce NO,
emissions by using larger amounts of noble metals in the catalytic converter. Introduction
of an electrically heated catalyst to improve effectiveness during cold starts and recycling
the exhaust gas to lower the peak temperatures in the cylinder would effectively reduce NO,

emissions (NRC, 1993).

Lean Burn Combustion Systems are under development . These use a closed loop
microprocessor in conjuction with a lean mixture sensor and an oxidation catalyst. The
catalysts are temperature sensitive and under exhaust conditions typical of high speed
operations, they tend to deactivate. Therefore they would require increased control of the
exhaust temperature. The catalysts are also sensitive to the oxygen and sulfur. Because of
their oxygen sensitivity, the catalysts would be of limited value for diesel exhaust systems
where the particulates are likely to accumulate on the catalyst thereby lowering its
effectiveness. In lean operating region, the engine needs a different sensor design to
provide feedback and also a highly turbulent fast burn combustion system so that the slow
flame speed and misfires do not cause emission and driveability problems. However this
system require a large volume of catalyst which restricts the use of the lean burn system to
cars under 2500-3000 pounds because NO, increases with vehicle weight. An electrically
heated catalyst would increase the weight of the vehicle and reduce fuel economy. Cost
effective approaches for controlling the emissions would be to have the catalyst heated
initially by briefly igniting a mixture of fuel and air in an after-burner, slightly upstream of

the catalyst. Fuel could be supplied by calibrating the engine to run with excees fuel. Air
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could be supplied by an electrically driven pump. By controlling the fuel to the individual
cylinders, a mixture with both excess air and excess fuel could be supplied to the catalyst.

However, this approach would be effective only after the catalyst has reached the initial

start-off temperature (Jhonson, 1988).

C.4.1 Alternate Fuels

One of the potential long term solutions to reduce ozone precursors from
automobile emissions is the use of alternate fuels. The role of VOCs in formation of
tropospheric ozone suggests that changing the fuels could be effective in reducing the
reactivity of the VOC emissions. Exhausts from conventionally fueled gasoline vehicles
are highly reactive in the atmosphere because they are rich in aromatics and alkenes.
Alternatively fueled vehicles such as those which run on methanol or natural gas would
have less reactive emisions and hence would reduce ozone f(;rmation. Electric vehicles
would run virtually without emissions. Reformulated gasoline, methanol, natural gas and
electricity are likely candidates to replace gasoline and diesel as vehicle fuels.

Environmental attributes of each fuel need to be studied for their effect on air quality and

the relative effectiveness of each fuel in lowering ozone (NRC, 1992).

C.4.2 Reformulated Gasoline

The composition of gasoline is altered by modifying the refining process and by

adding oxygenates to obtain a fuel lower in aromatics and olefins. The oxygenates enhance

the fuels octane rating and improve the efficiency of combustion. The presence of fuel
oxygen tends to decrease the CO emissions. The potential for using reformulated gasoline
to improve air quality is uncertain. There is the possibiity of reducing the total mass

emissions of VOCs and NO, by using different blends of reformulated gasoline but at the
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same time it needs to be determined to what degree automobile control systems and the
fuels match to reduce emissions. Reformulated gasolines offer the easiest transition to a
cleaner fuel and studies in progress indicate that properly reformulated gasolines can meet
or surpasss reductions in emission reactivity of methanol-gasoline blends (e.g., M85)

(NRC, 1992).

C.4.3 Natural Gas

Natural gas is primarily methane, with other light HCs such as ethane, ethene,
propane, etc. as impurities. For use as an automotive fuel it is either compressed and is
called as compressed natural gas (CNG) or it is ligified and called as ligified natural gas

(LPG).

VOC emissions from natural gas vehicles (NGVs) largely consist of methane,
which has low atmospheric reactivity. The NGVs usually operate under lean burn
conditions and the CO emissions are much less than those from gasoline powered vehicles.
The emission satndards for NO, limit the use of lean burn engines in NGVs. However,
the engine-out emissions (Engine out emissions are those released prior to the catalyst
reduction by a catalytic converter) of VOCs, CO and NO, from NGVs are substancially
lower than from conventional vehicles. Also the evaporative emissions are very small and

only slightly reactive (NRC, 1992).

C.4.4 Methanol

Methanol fuel is primarily methanol although a significant amount of other
compounds are added for safety and performance. Methanol has a high heat of vaporisation

and this makes it difficult to start a vehicle running on pure methanol. Therefore additives
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which raise vapor pressure and help cold start, are added to methanol. The resulting blends

are designated by an “M” followed by fraction of methanol (e.g., M85).

Unburned methanol is the largest component of methanol-fueled vehicle (MFV)
exhaust. However it is the second most abundant speceis of MFV exhaust, which is
formaldehyde (HCHO), that is toxic and highly photochemically reactive. Cold starts
provide bulk of the emissions from MFVs. Electrically heated catalysts reduce the tailpipe
emissions of HCHO by about 55 percent although these reulsts can not be sustained in
vehicles wirh higher mileage. The heated catalyst also decreases methanol emissions,
although NO, emissions increase.. CO emissions from MFVs are lower than their
conventionally-fueled counterparts. NO,_emissions could be catalytically controlled to meet
emission standards. Evaporative emissions from MFVs would be less reactive and the

mass emission rate would also be lower (NRC, 1992).

C.4.5 Electricity

Electricity powered vehicles will have virtually no on-road emissions. The use of
electric vehicles would eliminate all smog producing emissions. However fossil fuel
power plants producing electricity would emit NO_, oxides of sulfur, and small quantities
of VOCs and CO. These plants would contribute to ozone formation. The VOC and CO
emissions from these power plants are very small in comparision to internal combustion
engines. The NO, emissions depend on the type of fuel and control technology used.
According to a study by Krupnick et al. (1990), using electric vehicles would lead to
almost three times the reduction in peak ozone concentrations as compared to that obtained
from using M85 vehicles. The expected change in NO, emissions is an important
consideration, given that mobile sources are a dominant sources of NO, . Concentrations
of particulate matter and organic nitrates can be effectively reduced by lowering NO_

emissions.
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